
SmartCVS Tutorial

syntevo GmbH, www.syntevo.com

January 2010

Contents

1 Introduction 3

2 Before You Start 4
2.1 Download and Installation . 4
2.2 CVS Server . 4

2.2.1 CVSNT . 4
2.3 Setup . 5

3 Susan and Mike 6
3.1 Creating User Accounts . 6

4 Filling the Repository 9
4.1 Creating a CVS Module . 9
4.2 Define the Visible Table Columns . 13
4.3 Adding and Committing Files . 15

4.3.1 Ignoring Files . 16
4.3.2 Adding Files . 16
4.3.3 Committing Changes . 18

4.4 Marking Versions . 19

5 Mike Improves the Project 21
5.1 Checking Out Mike’s Working Copy . 21
5.2 Mike’s Changes . 26
5.3 Change Report . 27
5.4 Smart Commit . 28

6 Susan Fixes a Bug 30
6.1 Get Mike’s Changes . 30
6.2 Creating a Branch . 31
6.3 Fixing the Bug in the Branch . 33

7 Mike Merges Susan’s Bug-Fix 37
7.1 Merging Changes Between Branches . 37
7.2 Comparing Files . 40
7.3 Committing Merged Files . 41

1

Contents

8 Summary 43

9 Files 44
9.1 Susan’s First Version . 44

9.1.1 File build.bat . 44
9.1.2 File clean.bat . 45
9.1.3 File run.bat . 45
9.1.4 File src/com/mycompany/textviewer/Main.java 45
9.1.5 File src/com/mycompany/textviewer/TextViewerFrame.java . . 45

9.2 Mike’s Changes . 47
9.2.1 File run.bat . 47
9.2.2 File src/com/mycompany/textviewer/DocumentLoader.java . . . 47
9.2.3 File src/com/mycompany/textviewer/TextViewerFrame.java . . 48

9.3 Susan’s Bug Fix . 49
9.3.1 File src/com/mycompany/textviewer/Main.java 49

c© January 2010 syntevo GmbH, www.syntevo.com 2

Chapter 1

Introduction

CVS (Concurrent Versions System; http://www.nongnu.org/cvs/) is one of the most
widespread version control systems. Because its client-server-protocol and the source
code of the command line tool are open, a couple of CVS clients are available for almost
every platform. SmartCVS is such a CVS client, but in contrast with other CVS clients
which mostly are graphical front-ends to the command line CVS, SmartCVS tries to go
a step further. As its name claims, it builds a couple of smart features on top of the core
CVS functionality to make the daily work with CVS as easy and comfortable as possible,
even for CVS novices.

SmartCVS does not limit you to one platform, it runs on any platform where a Java
Runtime Environment (JRE) 1.4.1 or higher is available, including all newer Windows
versions, Linux, Solaris, Mac OS X, OS/2.

This tutorial shows you how to use SmartCVS for your daily work with CVS by
example of a simple Java project. It should be sufficient, if you have a little experience
with other version control systems. Nevertheless, even if you already have used CVS in
the past, this tutorial might contain some useful tips for you.

3

http://www.nongnu.org/cvs/

Chapter 2

Before You Start

2.1 Download and Installation

You can download SmartCVS from http://www.syntevo.com/smartcvs/download.html.
Depending on your operating system and whether you already have a JRE 1.4.1 or higher
installed, choose the appropriate bundle for your system configuration.

The installation is straight-forward. On Windows unpack the installer bundle, run the
containing setup.exe and follow the instructions of the installer. On Mac OS X just un-
pack the bundle by double clicking on it and move the SmartCVS.app to the /Application
directory. On the other systems, unpack the bundle into a directory of your choice. If
you also have older JRE versions installed, it might be necessary to set the path to
the JRE 1.4.1 or higher (recommended version: 1.6) in the corresponding launcher-script
(smartcvs.sh or smartcvs.cmd) which are located in the bin directory. Alternatively, for
the Unix/Linux-systems you can set the environment variable SMARTCVS JAVA HOME
pointing to the JRE.

2.2 CVS Server

For this tutorial you need a working CVS server. It is highly recommended to use a
separate installation for this tutorial as the tutorial requires some changes to the user
accounts of your CVS repository.

2.2.1 CVSNT

If you are on Windows, you should download CVSNT from http://www.cvsnt.org.
Install it with the default values (Typical installation and installing all services). Then
open the Service control panel from the CVSNT start menu group.

4

http://www.syntevo.com/smartcvs/download.html
http://www.cvsnt.org

Chapter 2. Before You Start

Switch to the Repository configuration tab and click the Add button. In the Location
input field enter the path to the new repository, e.g. C:\repository. The Name input
field will be filled automatically while typing. It finally should contain the /repository

path. Leave the checkboxes unchanged and click OK.

In the occuring message box, choose Yes to create the repository. Click Apply and
switch back to the About tab.

Click Stop right beside the CVSNT Service, wait until Stopped occurs and click the
Start button. After a few moments the CVSNT Service should be Running again. This
stop-start-sequence is necessary, because otherwise the CVSNT service does not know
about the changed repository configuration.

2.3 Setup

When starting SmartCVS the first time, you need to agree to its license agreement and
select what program edition you plan to use. This tutorial assumes, that you are using
the Professional edition of SmartCVS.

After starting SmartCVS, close the Tip Of The Day and Welcome to SmartCVS
dialogs.

c© January 2010 syntevo GmbH, www.syntevo.com 5

Chapter 3

Susan and Mike

Susan and Mike are the two virtual test users who will work concurrently on the tutorial
project. Don’t worry, you can perform the tutorial as a single person, but with the help
of two different user accounts.

CVS is a client-server-system. Each user has its own working copy (sandbox). The
CVS server maintains the central database for the project(s) and keeps track of the file
modifications. This central database is called repository for a CVS system. Beside the
projects, it contains some administration files which are located in the CVSROOT directory.
For the pserver access method which we will use in this tutorial, one important admin-
istration file is CVSROOT/passwd where all user accounts, who are allowed to access the
repository, are listed as well as their encrypted passwords. To create new user accounts,
this file must be edited. You can do this either by using command line tools or you can
use SmartCVS’ built-in User/Password Manager, as described below.

3.1 Creating User Accounts

To create the two user accounts ’susan’ and ’mike’ (we use lowercase user accounts to
distinguish from names of the virtual users), open the User/Password Manager by clicking
the Admin|User/Password Manager menu item.

First, SmartCVS needs to know in which repository the user accounts should be cre-
ated. Because a user account is necessary to log into the CVS server, the modifications

6

Chapter 3. Susan and Mike

must be done directly in the repository without a client-server connection. Therefore the
repository must be available in the local file system. If your CVS server is on a different
machine, mount the repository directory, so you are able to access it as a directory in
your local file system.

Enter the local path of your test repository. Click Next to proceed.

On this page you define the user accounts who can access this repository. Click the
Add button to add Susan’s account.

Enter susan as the user name and a password for her account. Retype the password
to prevent possible typing-errors. For some CVS servers, e.g. newer versions of CVSNT,
it is necessary to specify a system user which needs write access in the repository file
system of the CVS server. If you are unsure, contact the documentation of your CVS
server. The system user must be a user account from the CVS server’s operating system.
Click OK to create the new user account.

c© January 2010 syntevo GmbH, www.syntevo.com 7

Chapter 3. Susan and Mike

The passwords will be stored encrypted on the CVS server. Don’t wonder, if the same
password produces different encrypted passwords – this is intended behaviour. Now enter
Mike’s user account information in the same way.

Click Next to proceed.

Specify the line separators for writing the CVSROOT/passwd-file. This depends on
what operating system the CVS server is running. For the tutorial, a CVSNT server on
Windows was used.

Finally, to write the new user accounts to disk, click Finish.

c© January 2010 syntevo GmbH, www.syntevo.com 8

Chapter 4

Filling the Repository

For the tutorial, Susan has started coding a ’Text-Viewer’. The files she has created in
her project are listed in Section 9.1. You may create them with your text-editor, but you
might unpack Susan’s whole project from the zip-file susans-first-version.zip into
Susan’s working directory.

Now Susan wants to put her source files under CVS control. Therefore she will create
a new module in the repository.

4.1 Creating a CVS Module

Click the Project|Create Module menu item. This wizard lets you select the local root
directory which will be put under CVS control in order to create a new module.

Enter or select the path of the directory which contains Susan’s project and shall be
put under CVS control or choose it by clicking the Choose button right to the input field.
Click Next to proceed.

9

Chapter 4. Filling the Repository

SmartCVS needs to know in which repository the new module shall be created. It
maintains a list of Repository Profiles which specify the location of the repository and
additional parameters about how to connect to it. Among others, this includes the user
account.

For the first start of SmartCVS the list of repository profiles is empty, so click on the
Manage button to open the Repository Profiles dialog.

Click the Add button to create a new repository profile.

Keep the access method pserver selected. Enter susan in the User Name input field,
the name or IP-address of your CVS server in the Server Name input field and the path
of the repository in the Repository Path input field.

c© January 2010 syntevo GmbH, www.syntevo.com 10

Chapter 4. Filling the Repository

Note If you are using CVSNT on Windows as described in Section 2.2.1,
use the ’Name’ of the repository, not the ’Location’ with the drive
letter.

Click Next to proceed.

Enter Susan’s password in the Password inputfield. If you don’t want to be asked for
the password the next time, select the option Store password on disk. Keep the option
Verify connection when pressing Next selected and click Next. This will try to connect
to the repository using the entered password. If it succeeds, the next page will occur. If
it fails, check the entered password or the repository parameters on the previous page.

Because the default names of the repository profiles look a little bit cryptic for new
CVS users, select Use this profile name and enter Susan-Profile in the corresponding
input field. Click Finish to finally create the new repository profile.

c© January 2010 syntevo GmbH, www.syntevo.com 11

Chapter 4. Filling the Repository

The repository profile was created and verified. Click OK to confirm your changes of
the repository profiles.

SmartCVS automatically chooses the newly created repository profile, so you simply
can proceed by clicking Next.

Next you need to specify where the new module should be located in the repository
and how it should be named. SmartCVS suggests the name of the selected directory.

Because in this case the suggested module name is inappropriate, change it to textviewer
and click Next.

c© January 2010 syntevo GmbH, www.syntevo.com 12

Chapter 4. Filling the Repository

When creating a new module, SmartCVS automatically creates a corresponding SmartCVS-
project with the selected directory as project root.

Enter Susan’s Text-Viewer as the project name and click Next to proceed.

Before the module actually is created, you can review your choices. If everything is
fine, click Finish to confirm to create the module. SmartCVS now should open the newly
created SmartCVS-project.

After the module has been created, the corresponding local directory has been put
under CVS control. Files and subdirectories have not been regarded by this operation.
You’ll see soon, how to put the files under CVS control.

4.2 Define the Visible Table Columns

Because by default too much table columns are displayed, we want to hide the ones, which
are not needed for this tutorial. Click the View|Table Columns menu item.

c© January 2010 syntevo GmbH, www.syntevo.com 13

Chapter 4. Filling the Repository

Select the table columns Remote State, Change Set, Editors, Ext., Editable and
Author in the right Selected list and drag them to the left Available list or click the
Remove button.

Select the option Make this configuration the default and click OK.

c© January 2010 syntevo GmbH, www.syntevo.com 14

Chapter 4. Filling the Repository

4.3 Adding and Committing Files

SmartCVS’ main window consists of the following major parts:

• The directory tree on the left shows the directory structure of the project.

• The file table on the right shows the files in the selected directory. By default, the
files from subdirectories are shown as well. The values in the table column Relative
Directory indicate the subdirectories of the files.

• The Output view at the bottom shows the output of the CVS commands.

The small Java project Susan created contains two main directories, src and classes.
The first one contains subdirectories (which are called packages in Java) with the source
files and the latter one the generated class-files. In the project’s root directory you’ll
find the files required for building and running the application. For simplicity, batch files
are used instead of a makefile or an ANT build file (http://www.apache.org/ant/).

Tip To run the application yourself, you can use SmartCVS’ JRE.
Change the environment variable JAVA HOME in the file run.bat

to point to the JRE and launch this batch file.
If you want to compile the source files yourself, you need to have
a JDK (version 1.3 or higher; see http://java.sun.com for down-
loads) installed on your system. Edit the batch files, so their
JAVA HOME environment variable points to the JDK.

Except for the root directory, Susan’s project is not yet under CVS control. Hence the
files and directories are treated as new indicated by an icon with a blue star. Because by
default SmartCVS shows you the files from the selected directory and its subdirectories,
it is hard to accidently forget some files.

c© January 2010 syntevo GmbH, www.syntevo.com 15

http://www.apache.org/ant/
http://java.sun.com

Chapter 4. Filling the Repository

4.3.1 Ignoring Files

The classes directory is created by the build.bat batch file and the containing class-
files can be generated from the source files. Therefore it does not make sense to put them
under CVS control. You can achieve this by marking the classes directory to be ignored.

Select the classes directory and click the Modify|Ignore menu item.

Click Ignore to ignore the directory, then select the project’s root directory.

Note Because you invoked this action on a directory, you don’t have any
changeable options. If you would have selected one or more files,
you would have the option to ignore either by file patterns or by
file names. Furthermore you would have the choice, whether all
directories of all projects should be affected or just the directory of
the corresponding file. Directories can only be ignored locally (in
the parent directory where they are located).

The classes directory is now displayed grayed to indicate, that it is ignored. The
class files aren’t listed any more, but a new file .cvsignore was created in the root
directory. This is the file, where CVS stores the information, what files or directories
should be ignored in the local directory. It’s common practice to put this file also under
CVS control, because other users, like Mike, need to have the same files and directories
ignored.

4.3.2 Adding Files

Select all files in the file table and click the Add tool bar button.

c© January 2010 syntevo GmbH, www.syntevo.com 16

Chapter 4. Filling the Repository

Note For nearly all SmartCVS operations it is important, which directory
and files are selected and whether the focus is in the directory tree
or the file table.
There is a general rule: if the focus is in the directory tree, the
operation is performed on the selected directory (the selected files
don’t matter). If the focus is in the file table, the operation is
performed on the selected files.
SmartCVS highlights the currently focussed component with a blue
background in its title bar.

With the File Types options you can decide, whether the file types of the selected files
should be detected automatically or whether SmartCVS should be forced to treat them
as text or binary files.

Note The distinction between text and binary files is essential for CVS,
because line separators are converted in text files, which would
corrupt binary data. On the other hand, binary files cannot be
merged, because the CVS server does not know about how to merge
the binary content and hence treats them as a black box.

With the Keyword Substitution for Text Files options you can decide, whether or how
special keywords in text files, like $Author$, $Date$ or $Revision$, should be expanded
(e.g., to susan, 2003-01-10 or 1.6) when the files are committed.

Keep the options Automatic detection of text and binary files and No keyword
substitution (-ko) selected and click Add to add the files.

c© January 2010 syntevo GmbH, www.syntevo.com 17

Chapter 4. Filling the Repository

The file icons change to red files with a green plus-sign and the values in the Local
States table column change to Added to indicate files, that are just marked for adding,
but need to be committed to be actually stored in the repository.

Note You don’t need to add all the directories, where the files are located
in, explicitly like with other CVS clients. SmartCVS puts them
automatically under CVS control when files from these directories
are added.

4.3.3 Committing Changes

Currently the files are only marked for adding, but aren’t stored in the repository yet.
To store added files or modifications of already CVS controlled files in the repository, you
need to commit them.

Keep the added files selected and click the Modify|Commit menu item or the Commit
tool bar button.

When committing, you have the option to enter a log message. This helps you to
better keep track, why a commit was made, especially why a revision was created.

c© January 2010 syntevo GmbH, www.syntevo.com 18

Chapter 4. Filling the Repository

Enter first version for the Log Message and click Commit.

The file icons change to white to indicate, that these local files are under CVS control
and don’t differ from their revisions in the repository.

Note The previous statement is only valid immediately after running a
commit, update or checkout command or after refreshing the Local
State.
A file icon corresponds directly to the Local State of that file. Be-
cause the Local State is detected by the file modification time,
the icon does not indicate, whether another user changed the file
in the repository. To detect changes in the repository use the
Query|Refresh Remote State menu item.

4.4 Marking Versions

Now Susan is satisfied with her work and wants to make a beta-release. She decides to
mark all files of the project with a specific label, to add a tag to the files. This helps in
the future to reconstruct an old project state from the repository.

To add a tag to the whole project, select the project root directory and click the
Tag/Branch|Add Tag menu item or the Add Tag tool bar button.

c© January 2010 syntevo GmbH, www.syntevo.com 19

Chapter 4. Filling the Repository

Enter version-0 1 as the Tag Name and click OK to start adding the tag to the
selected files.

Note You cannot enter an arbitrary name as a tag name, because some
characters like spaces and periods aren’t allowed by CVS. It is com-
mon, to use the minus or underscore instead.

c© January 2010 syntevo GmbH, www.syntevo.com 20

Chapter 5

Mike Improves the Project

5.1 Checking Out Mike’s Working Copy

Because Mike wants to change some things on the Text-Viewer project, he needs to check
out his own working copy. For easier handling, you can do it in the same SmartCVS
instance and not on a different machine as usually.

Open the Checkout Wizard by clicking the Project|Check Out menu item.

First, SmartCVS needs to know, where to check out from and what user account to
use. Again, this is determined by repository profiles. Currently, there is only Susan’s
repository profile defined. To check out with the user account mike, you need to create a
new repository profile.

Click Manage to open the list of repository profiles.

21

Chapter 5. Mike Improves the Project

You could add Mike’s profile as done with Susan’s, but there is an easier solution,
where you don’t need to enter all the repository parameters again. Select the Susan
Profile and click the Copy button.

Change the content of the User Name input field to mike and click Next.

Enter Mike’s password and click Next.

c© January 2010 syntevo GmbH, www.syntevo.com 22

Chapter 5. Mike Improves the Project

Change the profile name to Mike-Profile and click Finish to create the profile.

Click OK to confirm your changes to the repository profiles.

The newly created repository profile will be preselected automatically. Click Next to
start scanning the repository defined by the selected repository profile.

c© January 2010 syntevo GmbH, www.syntevo.com 23

Chapter 5. Mike Improves the Project

After a few moments, SmartCVS should have scanned the repository and displayed
its content. Select the textviewer directory in the Repository Structure tab and click
Next.

Now enter the local directory where Mike’s Text-Viewer project should be created. By
default SmartCVS checks out into a new directory with the name of the selected repository
directory (here textviewer). To better distinguish Susan’s and Mike’s project, we name
Mike’s projects root directory differently. Keep the Check out into alternative path
(instead of module name) option selected, enter mike-project as Alternative Path
and click Next.

c© January 2010 syntevo GmbH, www.syntevo.com 24

Chapter 5. Mike Improves the Project

In some cases it is necessary to specify different options, but for this tutorial it is
sufficient to keep them as they are. Click Next to continue.

As the checkout will implicitly create a new SmartCVS-project, you can now adjust
the project settings. Enter Mike’s Text-Viewer as project name, leave all other options
at their default values and click Next to proceed.

Note If the default values do not match your needs and you always have
the change them, you may change the default values in the prefer-
ences (Edit|Preferences).

Review your choices. If everything is fine, click Finish to start checking out Mike’s
project.

c© January 2010 syntevo GmbH, www.syntevo.com 25

Chapter 5. Mike Improves the Project

After a few moments all files have been checked out and Mike’s project is created. He
got all files, that are now present in the repository. Because Susan ignored the classes

directory and therefore did not add any files from it, it has not been checked out into
Mike’s project. But after he ran build.bat, he will get the classes directory, too.
Because Susan put the .cvsignore file also under CVS control, Mike got it with the
check out, so the classes directory will be ignored in his project automatically.

5.2 Mike’s Changes

Mike modifies the code a little bit and adds an icon to the application’s window. Because
the application needs to find the icon resource at runtime, he needs to change the run.bat
file, too. All modified text files are available in the Section 9.2. You can modify the
necessary files or unpack them from the zip-file mikes-changes.zip.

Select the root directory in the directory tree and click the View|Refresh menu item or
the Refresh tool bar button to see the modifications. This forces SmartCVS to reload the
file-system below the selected directory and update the Local States of the corresponding
files.

c© January 2010 syntevo GmbH, www.syntevo.com 26

Chapter 5. Mike Improves the Project

Note By default, SmartCVS sorts the files by the Local State table col-
umn. This has the advantage, that the most important files will be
shown on top.

5.3 Change Report

After a while, Mike decides to commit his changes. As he is a cautious guy, he wants to
review his local changes. This easily can be done using the Change Report.

Ensure, that the project root directory is selected and click the Query|Change Report
menu item.

The change report offers three kinds of reports: Reporting only the local changes,
comparing against the current revisions within the repository and and reporting only the
changes made in the repository. Because Mike only wants to see his local changes, keep
the option Local changes selected and click OK.

c© January 2010 syntevo GmbH, www.syntevo.com 27

Chapter 5. Mike Improves the Project

After a few moments the Change Report window will be opened. It shows four changed
files and by selecting a file you can see the in-file changes which have been performed
(except for binary files like the icon.gif). You also can use the arrow tool bar buttons
to step through all changes of all files.

After reviewing the changes, close the Change Report window.

5.4 Smart Commit

Mike created two new files and modified two others. It would be possible to add the
new files with the Add command as Susan did and commit all four files afterwards, but
SmartCVS offers the ability to do this in one step.

Select the new, non-CVS files and the modified files. This can be done very fast using
the Edit|Select Committable Files or the associated short-cut <Ctrl>+<Shift>+<A>.

c© January 2010 syntevo GmbH, www.syntevo.com 28

Chapter 5. Mike Improves the Project

Click the Modify|Smart Commit menu item or the Smart Commit tool bar button.

The Smart Commit command does not support all options of the Add commands.
Instead it uses the default values which can be configured in the preferences.

Enter Mike’s log message improved look, small modifications, leave all other op-
tions at their defaults and click Commit.

SmartCVS adds the non-CVS files and then commits all files. One advantage is, that
you don’t need to worry about the file types, as you would need with other CVS clients.
SmartCVS scans each file you want to add and detects, whether it must be added as a text
file or as a binary file. Looking at the Type table column, you can see, that SmartCVS
added the file icon.gif as a binary file. The revision of the modified and committed files
changed from 1.1 to 1.2.

c© January 2010 syntevo GmbH, www.syntevo.com 29

Chapter 6

Susan Fixes a Bug

6.1 Get Mike’s Changes

Susan needs to get Mike’s changes in her project. This is done with the Update command.
To switch back to Susan’s project, click the triangle button in the top-right of the

Directories tree component and select her project. Select Current Window, when asked
in which window the project should be opened.

To get the latest sources, ensure, that the project root directory is selected and click
the Modify|Update menu item or the Update tool bar button.

This is the light-weight version of the update command, which only has a few options
to get the latest changes from the repository and is sufficient for 90% of the daily work.

30

Chapter 6. Susan Fixes a Bug

Leave the preselected options unchanged and click Update.

As you can see, Mike’s added and changed files will be fetched.

Note In contrast to some other version control systems, not only new files
will automatically be fetched, but also obsolete files will be deleted.

6.2 Creating a Branch

Before Susan can proceed in improving the Text-Viewer project, she receives a bug report
about a program crash, when no file is specified on the command line. Mike says, that
his modifications aren’t tested enough to use it as a base for the bug-fix. Happy, that she
has added a tag to her first release, she wants to fetch the first release’s files back and fix
the bug independent of Mike’s changes.

Ensure, that the project root directory is selected and click the Modify|Switch (Spe-
cial Update) menu item.

This is the powerful version of the update command, which also provides the possibility
to switch to different tags, branches, revisions or to revert back erroneousy committed

c© January 2010 syntevo GmbH, www.syntevo.com 31

Chapter 6. Susan Fixes a Bug

files. Susan needs to fetch a project state, that was marked with a tag, so select the
option Retrieve Tag/Branch (new sticky). Enter version-0 1 in the input field and
click Switch.

After a few moments Susan gets all files that were tagged with version-0 1, as you
can see from the values of the Sticky table column. If a table column is too small, double
click at the right side of its table header.

Note Mike’s newly added files icon.gif and DocumentLoader.java will
be automatically removed, because they were not present in the
“version 0.1”.

It is very convenient to fix bugs without impact on the ongoing work. You can do
this with the help of branches. With CVS a branch is a special kind of tag, a so-called
branch-tag.

To create a branch on all the revisions of the local files, select the project root directory
and click the Tag/Branch|Create Branch menu item.

To distinguish between branch-tags and normal tags, it’s always a good idea to name
them differently, for example with a -branch suffix.

Enter the branch name version-0 1-branch, ensure, that the options Revisions spec-
ified by local files and Update Branch are selected, and click OK.

c© January 2010 syntevo GmbH, www.syntevo.com 32

Chapter 6. Susan Fixes a Bug

SmartCVS creates the branch-tag at the revisions of the local files and then updates
with the newly created branch. As you can see from the revisions, no file was changed
locally, but the Sticky value changed from version-0 1 to version-0 1-branch. Also
take a look at the versioned directories. Each one will display the branch name in gray
braces. When a new file is added, it will be automatically added to the branch of its
containing directory.

6.3 Fixing the Bug in the Branch

Susan modifies the file Main.java to show an error message on the command line, if no
file was specified.

Change the file as shown in Section 9.3 or unpack it from the zip-file susans-bugfix.zip.
Click the View|Refresh menu item or the Refresh tool bar button to see her changes.

c© January 2010 syntevo GmbH, www.syntevo.com 33

Chapter 6. Susan Fixes a Bug

To commit the changes, click the Modify|Commit menu item or the Commit tool bar
button.

Enter a meaningful log message like fixed ArrayIndexOutOfBoundsException, when

no file specified and click OK.

The revision of the file Main.java changed from 1.1 to 1.1.2.1 to indicate, that the
new revision was created in the first branch of the revision 1.1.

After some testing, the version works fine and Susan releases the Text-Viewer project
as “version 0.1.1”. To reflect this by a tag, she tags the project with version-0 1 1.

Ensure, that the project root directory is selected and click the Tag/Branch|Add Tag
menu item or the Add Tag tool bar button.

c© January 2010 syntevo GmbH, www.syntevo.com 34

Chapter 6. Susan Fixes a Bug

Enter the tag name version-0 1 1, ensure, that option Revisions specified by local
files is selected and click OK.

To see, what has happened in detail to the file Main.java, take a look at its log.
Select the file Main.java and click the Query|Log menu item or the corresponding tool
bar button.

In the Log window you can see two revisions (green background color), each within
a branch (blue background color), for the file Main.java. Branches are completely in-
dependent change-lines and there is always a default branch, the so-called Main Trunk.
The numbering of branches (except of the Main Trunk) starts with their initial revision
followed by an even number, e.g., 1.1.2, 1.1.4, 1.1.6 would be the first, second and
third branch of revision 1.1. Normally you don’t have to worry about branch numbers,
because you cannot create a branch without a branch-tag. Branches might contain their

c© January 2010 syntevo GmbH, www.syntevo.com 35

Chapter 6. Susan Fixes a Bug

own revisions. Their revision numbers consist of the branch revision plus a positive num-
ber. For instance, 1.1.2.1, 1.1.2.2, 1.1.2.3 would be revisions in the first branch of
revision 1.1. The Main Trunk’s revision numbers are two numbers, separated by a period,
e.g., 1.1, 1.2 or 1.157.

The branch were revisions will be created, can be changed by running the Switch
(Special Update) command with the option Retrieve Tag/Branch (new sticky) selected
and the appropriate branch-tag.

Tip The Main Trunk can be accessed from a branch with the tag name
HEAD.

c© January 2010 syntevo GmbH, www.syntevo.com 36

Chapter 7

Mike Merges Susan’s Bug-Fix

Susan fixed the bug only in the branch version-0 1-branch. Therefore Mike’s code,
which only exists on the Main Trunk, is not influenced by Susan’s changes and still
contains the same bug. There are two solutions to also fix the bug in the Main Trunk.
Mike can do it himself or he can let CVS help him, which is easier and more robust.

CVS records the changes for all revisions. Hence it knows, what lines were added,
deleted or modified from revision to revision, and can apply the changes between two
revisions to another revision of the same file. This process is called merging. Mike
decides to let CVS do the merge for him.

7.1 Merging Changes Between Branches

Switch back to Mike’s project by clicking the triangle button in the top-right corner of
the Directories tree and choose Mike’s project. Select Current Window, when asked in
which window the project should be opened.

Ensure, that the project root directory is selected, and click the Modify|Merge menu
item.

37

Chapter 7. Mike Merges Susan’s Bug-Fix

The Merge command allows you to merge changes between different branches. The
target branch must be already checked out (see the Sticky column of the file table) and
the source branch can be entered. Because it is possible to merge multiple times from
one branch, it is necessary to merge only the changes made between a start- and an end-
position, either specified with a (branch) tag or a revision. Although you don’t merge
multiple times in the Text-Viewer tutorial project, you should make use of this possibility.

You need to merge the changes, that Susan made between the “version 0.1” and
“version 0.1.1” into the Main Trunk. Mike’s project is already on the Main Trunk (empty
Sticky table column).

Mike can remember, that Susan tagged her initial project with version-0 1. This is
the point from where he wants to start merging. Select the Start With option and enter
version-0 1 in the (second) Tag input field.

Mike does not know the tag, which Susan used to fix the reported bug. Therefore he
will use the Tag Browser to select this tag. Click the Browse button right to the (first)
Branch/Tag input field to open the Tag Browser.

Click on the Refresh button to reload the tags from the repository.

c© January 2010 syntevo GmbH, www.syntevo.com 38

Chapter 7. Mike Merges Susan’s Bug-Fix

Now Mike can figure out that Susan has tagged her bug-fix with version-0 1 1. Select
this tag in the Tags table and click Select.

Click Merge to start the merge.

In contrast to other version control systems, CVS merges the changes locally (you
merge from, not to), so you can test, whether the merge was successfully before com-
mitting the results. For all files where merging was necessary, the original local file is
automatically backed up as file .#<file-name>.<local-revision>. Usually you can
ignore and therefore delete such files after you have verified, that the merge was successful.

c© January 2010 syntevo GmbH, www.syntevo.com 39

Chapter 7. Mike Merges Susan’s Bug-Fix

7.2 Comparing Files

Mike wants to review the changes made by Susan. As only one file has been changed, he
decides to use the built-in File Compare for this purpose.

Select the file Main.java and click the Query|Compare menu item or the Compare
tool bar button.

You can decide, with what repository revision the local file should be compared. If
the file is locally modified, it is most likely, that you want to see the local changes and
therefore SmartCVS automatically selects Same revision (What was changed locally?).
If the file is up-to-date, it is most likely, that you want to see, what might have changed in
the repository and therefore Latest revision (What was changed in the Repository?)
is automatically selected.

Because Mike wants to see, what changes the merge produced locally, keep the default
value Same revision (What was changed locally?) selected and click Compare.

After a few moments the File/Revision Compare window shows up. Between both file
versions, the ”change-stripe” to the left and right shows you at one glance all changes
in the file. Green indicates inserted, blue deleted and red modified lines. If you have
performed a compare on a local file, the right text area is editable, as it is the case for
this example. This is for instance convenient, if you want to revert some of your changes

c© January 2010 syntevo GmbH, www.syntevo.com 40

Chapter 7. Mike Merges Susan’s Bug-Fix

before committing the file.
Mike decides to rewrite the error message, which has been introduced by Susan in case

of a missing file name.
Click in the right area of the File/Revision Compare window and replace Susan’s text

Please specify the file to open as the one and only argument. with Usage:

run filename which sounds more professional to Mike. Then click File|Save and close
the window.

Note You can also configure external file comparators for different file
patterns. Take a look at the Preferences dialog (Edit|Preferences
menu item), if you want to make use of this possibility.

7.3 Committing Merged Files

Mike has verified the successful merge. Therefore select the file .#Main.java.1.1 and
click the Modify|Delete Locally menu item or the Delete tool bar button.

Click Delete to confirm the deletion of the file.

Warning! You will not be able to restore the deleted file(s), e.g, from the
Windows Trash, so be careful before clicking Delete!

Now Mike can commit the changes. No files need to be added or removed. Therefore
it is sufficient to select the project root directory and click the Modify|Commit menu
item or the Commit tool bar button.

Enter a meaningful log message like merged from version-0 1 1 (version-0 1-branch)

and click Commit.

c© January 2010 syntevo GmbH, www.syntevo.com 41

Chapter 7. Mike Merges Susan’s Bug-Fix

The Main.java’s revision increased to 1.2, indicating, that a new revision was created
on the Main Trunk. The Main Trunk now contains Mike’s improvements and Susan’s bug-
fix.

Note Susan could now switch back to work together with Mike in the
Main Trunk by performing an update with the option Main trunk’s
head (Reset Sticky) selected.

c© January 2010 syntevo GmbH, www.syntevo.com 42

Chapter 8

Summary

Obviously, this Text-Viewer project can be more improved, but you can delegate this to
Susan and Mike.

In this tutorial you have learned, how to use SmartCVS to import projects into the
repository, how to check out working areas. You have seen, how to get latest sources,
commit changes or work with branches, so it should be possible for you to start with
SmartCVS on a daily base. SmartCVS contains a lot more features for successful devel-
opment and maintainance of software projects or other projects for which a change-history
is useful. Find them out by yourself!

Good luck and happy versioning!

43

Chapter 9

Files

9.1 Susan’s First Version

This is the directory structure.

[.]

+ [classes]

| - [com]

| - [mycompany]

| - [textviewer]

| * Main.class

| * TextViewerFrame.class

+ [src]

| - [com]

| - [mycompany]

| - [textviewer]

| * Main.java

| * TextViewerFrame.java

* build.bat

* clean.bat

* run.bat

9.1.1 File build.bat

@echo off

set JAVA_HOME=C:\jdk1.3.1

set CLASSES=classes

set SOURCES=src

set MAIN_FILE=%SOURCES%\com\mycompany\textviewer\Main.java

if not exist %CLASSES% mkdir %CLASSES%

44

Chapter 9. Files

%JAVA_HOME%\bin\javac -d %CLASSES% -sourcepath %SOURCES% %MAIN_FILE%

9.1.2 File clean.bat

rmdir classes /s /q

9.1.3 File run.bat

@echo off

set JAVA_HOME=C:\jdk1.3.1

set CLASSES=classes

set MAIN_CLASS=com.mycompany.textviewer.Main

%JAVA_HOME%\bin\java -cp %CLASSES% %MAIN_CLASS% %1

9.1.4 File src/com/mycompany/textviewer/Main.java

package com.mycompany.textviewer;

import java.io.*;

public class Main {

public static void main(String[] args) throws IOException {

final TextViewerFrame viewerFrame = new TextViewerFrame();

viewerFrame.setVisible(true);

viewerFrame.loadFile(new File(args[0]));

}

}

9.1.5 File src/com/mycompany/textviewer/TextViewerFrame.java

package com.mycompany.textviewer;

import java.awt.*;

import java.io.*;

import javax.swing.*;

import javax.swing.text.*;

class TextViewerFrame extends JFrame {

private final JTextArea textArea;

c© January 2010 syntevo GmbH, www.syntevo.com 45

Chapter 9. Files

public TextViewerFrame() {

super("TextViewer");

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

textArea = new JTextArea();

textArea.setFont(new Font("Monospaces", Font.PLAIN, 12));

textArea.setEditable(false);

final JScrollPane scrollPane = new JScrollPane(textArea);

scrollPane.setPreferredSize(new Dimension(400, 300));

setContentPane(scrollPane);

pack();

final Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSize();

final Dimension size = getSize();

setLocation((screenSize.width - size.width) / 2,

(screenSize.height - size.height) / 2);

}

public void loadFile(File file) throws IOException {

final BufferedReader reader = new BufferedReader(new FileReader(file));

try {

final Document document = new PlainDocument();

for (String line = reader.readLine();

line != null;

line = reader.readLine()) {

document.insertString(document.getLength(), line, null);

document.insertString(document.getLength(), "\n", null);

}

textArea.setDocument(document);

}

catch (BadLocationException ex) {

ex.printStackTrace();

}

finally {

try {

reader.close();

}

catch (IOException ex) {

// if this fails, we really have a problem

}

c© January 2010 syntevo GmbH, www.syntevo.com 46

Chapter 9. Files

}

}

}

9.2 Mike’s Changes

Following, only the changed files are listed.

9.2.1 File run.bat

@echo off

set JAVA_HOME=C:\jdk1.3.1

set CLASSES=classes

set SOURCES=src

set MAIN_CLASS=com.mycompany.textviewer.Main

%JAVA_HOME%\bin\java -cp %CLASSES%;%SOURCES% %MAIN_CLASS% %1

9.2.2 File src/com/mycompany/textviewer/DocumentLoader.java

package com.mycompany.textviewer;

import java.io.*;

import javax.swing.text.*;

class DocumentLoader {

public void load(Document document, File file) throws IOException {

final BufferedReader reader = new BufferedReader(new FileReader(file));

try {

for (String line = reader.readLine();

line != null;

line = reader.readLine()) {

document.insertString(document.getLength(), line, null);

document.insertString(document.getLength(), "\n", null);

}

}

catch (BadLocationException ex) {

ex.printStackTrace();

}

finally {

try {

c© January 2010 syntevo GmbH, www.syntevo.com 47

Chapter 9. Files

reader.close();

}

catch (IOException ex) {

// if this fails, we really have a problem

}

}

}

}

9.2.3 File src/com/mycompany/textviewer/TextViewerFrame.java

package com.mycompany.textviewer;

import java.awt.*;

import java.awt.event.*;

import java.io.*;

import javax.swing.*;

import javax.swing.text.*;

class TextViewerFrame extends JFrame {

private final JTextArea textArea;

public TextViewerFrame() {

super("TextViewer");

setIconImage(new ImageIcon(getClass().getResource("icon.gif")).getImage());

textArea = new JTextArea();

textArea.setFont(new Font("Monospaces", Font.PLAIN, 12));

textArea.setEditable(false);

init();

}

private void init() {

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

setJMenuBar(createMenuBar());

final JScrollPane scrollPane = new JScrollPane(textArea);

scrollPane.setPreferredSize(new Dimension(400, 300));

setContentPane(scrollPane);

pack();

c© January 2010 syntevo GmbH, www.syntevo.com 48

Chapter 9. Files

final Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSize();

final Dimension size = getSize();

setLocation((screenSize.width - size.width) / 2,

(screenSize.height - size.height) / 2);

}

private JMenuBar createMenuBar() {

final JMenu fileMenu = new JMenu("File");

fileMenu.setMnemonic(’f’);

fileMenu.add(createExitAction());

final JMenuBar menuBar = new JMenuBar();

menuBar.add(fileMenu);

return menuBar;

}

private AbstractAction createExitAction() {

return new AbstractAction("Exit") {

public void actionPerformed(ActionEvent e) {

processWindowEvent(new WindowEvent(TextViewerFrame.this,

WindowEvent.WINDOW_CLOSING));

}

};

}

public void loadFile(File file) throws IOException {

final PlainDocument document = new PlainDocument();

new DocumentLoader().load(document, file);

textArea.setDocument(document);

}

}

9.3 Susan’s Bug Fix

9.3.1 File src/com/mycompany/textviewer/Main.java

package com.mycompany.textviewer;

import java.io.*;

public class Main {

public static void main(String[] args) throws IOException {

if (args.length != 1) {

System.out.println("Please specify the file to open as the one and" +

c© January 2010 syntevo GmbH, www.syntevo.com 49

Chapter 9. Files

" only argument.");

return;

}

final TextViewerFrame viewerFrame = new TextViewerFrame();

viewerFrame.setVisible(true);

viewerFrame.loadFile(new File(args[0]));

}

}

c© January 2010 syntevo GmbH, www.syntevo.com 50

	Introduction
	Before You Start
	Download and Installation
	CVS Server
	CVSNT

	Setup

	Susan and Mike
	Creating User Accounts

	Filling the Repository
	Creating a CVS Module
	Define the Visible Table Columns
	Adding and Committing Files
	Ignoring Files
	Adding Files
	Committing Changes

	Marking Versions

	Mike Improves the Project
	Checking Out Mike's Working Copy
	Mike's Changes
	Change Report
	Smart Commit

	Susan Fixes a Bug
	Get Mike's Changes
	Creating a Branch
	Fixing the Bug in the Branch

	Mike Merges Susan's Bug-Fix
	Merging Changes Between Branches
	Comparing Files
	Committing Merged Files

	Summary
	Files
	Susan's First Version
	File build.bat
	File clean.bat
	File run.bat
	File src/com/mycompany/textviewer/Main.java
	File src/com/mycompany/textviewer/TextViewerFrame.java

	Mike's Changes
	File run.bat
	File src/com/mycompany/textviewer/DocumentLoader.java
	File src/com/mycompany/textviewer/TextViewerFrame.java

	Susan's Bug Fix
	File src/com/mycompany/textviewer/Main.java

