SmartGit Quickstart Guide

syntevo GmbH, www.syntevo.com

2010

Contents

Introduction
Git-Concepts
2.1 Repository, Working Tree, Commit
2.2 Typical Project Life-Cycle
2.3 Branches
2.3.1 Working With Branches
2.3.2 Branches Are Just Pointers,
2.4 Commits e
2.4.1 It’s All About Commits
2.4.2 How Things Play Together
2.5 Thelndex e
2.6 Merging and Rebasing o oL
2.7 Working Tree States
2.8 Submodules
2.9 Git-SVN . . . e e e
Important Commands
3.1 Project-Related
3.1.1 Open Working Tree,
3.1.2 Cloning a Repository,
3.2 Synchronizing With a Remote Repository
3.2.1 Push
3.22 Pull ..o e
3.2.3 Synchronize
3.3 Local Operations On The Working Tree
3.3. 1 Stage
3.3.2 Unstage e
3.3.3 Ignore
3.3.4 Commit e
3.3.5 Undo Last Commit
3.3.6 Revert
3.3.7 Remove
3.3.8 Delete
3.4 Branch Handling

Contents

341 Switch
3.4.2 Checkout
343 Merge
344 Cherry Pick o 0oL
345 Rebase oL
346 AddBranch
347 AddTag
3.4.8 Branch Manager
4 System properties/VM options
4.1 General properties
4.2 User interface properties

4.3 Specifying VM options and system properties

5 Installation and Files

5.1 Location of SmartGit’s settings directory
5.2 Notable configuration files
5.3 Company-wide installation
5.4 JRE search order (Windows)

(© 2010 syntevo GmbH, www.syntevo.com

Chapter 1

Introduction

SmartGit is a graphical Git client which runs on all major platforms. Git is a distributed
version control system (DVCS). SmartGit’s target audience are users who need to manage
a number of related files in a directory structure, to co-ordinate access to them in a multi-
user environment and to track changes to these files. Typical areas of applications are
software projects, documentation projects or website projects.

Acknowledgments

We want to thank all users, who have given feedback to the early-access-builds of SmartGit
and in this way helped to improve it by reporting bugs and making feature suggestions.

Chapter 2

Git-Concepts

The following section helps you to easily start-up with Git and tries to give you an
understanding of the elemental concepts of Git for efficient working.

2.1 Repository, Working Tree, Commit

First, we need to define some Git-specific names which might differ in their meaning with,
for example, those from Subversion.

Classical centralized version control systems like CVS or Subversion (SVN) use one central
repository and local working copies. CVS/SVN working copies can just refer to parts of
the central repository. With Git everything is a repository, even the local ”working copy”
which always refers to a complete repository, not just to parts of it. Git’s working tree is
the directory where you can edit files. Each working tree has its corresponding repository.
So-called bare repositories which are used on servers in the meaning of central repositories
don’t have a working tree.

Example

Let’s assume you have all your project related files in a directory D:\my-project.
Then this directory represents the working tree containing all files to edit. The
attached repository (or more precise: the repository’s meta data) is located in the
D:\my-project\.git directory.

2.2 Typical Project Life-Cycle

As with all version control systems, there typically exists a central repository containing
the project files. To create a local repository, you need to clone the remote central
repository. Then the local repository is connected to the remote repository which, from
the local repository’s perspective, is referred to as origin. The cloning-step is comparable
with the initial SVN checkout for getting a local working copy.

4

Chapter 2. Git-Concepts

Having the local repository now containing all project files from origin, you can make
changes to the files in the working tree and commit the changes. These changes will
be stored in your local repository only, you don’t even need to have access to a remote
repository when committing. Later on, after you have committed a couple of changes,
you can push (see 3.2.1) them back to the remote repository. Other users which have also
their own clone of the origin repository, pull (see 3.2.2) from the remote repository to get
your pushed changes.

2.3 Branches

Branches can be used to store independent commits in the repository, e.g., to fix bugs
for a released software project and continue to develop new features for the next project
version.

Git distinguishes between two kinds of branches: local branches and remote branches. In
the local repository, you can create as much local branches as you like. Remote branches
refer to local branches of the origin-repository. In other words: cloning a remote repository
clones all its local branches which then are stored in your local repository as remote
branches. You can’t work directly with the remote branches, but have to create local
branches for them which are ”linked” to the remote branches. From the local branch’s
point of view, the corresponding remote branch is called tracking branch. There can be
independent local branches and local branches with tracking branches.

The default local main branch which Git creates is named master (the SVN equivalent
is the “trunk”). When cloning a remote repository, the master tracks the remote branch
origin/master.

2.3.1 Working With Branches

After you have pushed changes from your local branch to the origin-repository, the track-
ing branch will get those changes, too. If you pull changes from the origin-repository,
these commits will be stored in the remote tracking branch of the local repository. To get
the remote branch changes into your local branch, the remote changes have to be merged
from the tracking branch. This can be done directly when invoking the Pull command in
SmartGit or later by explicitly invoking the Merge command.

2.3.2 Branches Are Just Pointers

Every branch is simply a named pointer to a commit. A special unique pointer for every
repository is the HEAD which indicates the commit to which the working tree belongs.
The HEAD cannot only point to a commit, but also to a local branch which itself points
to a commit. Committing changes will create a new commit on top of the commit where
the HEAD is pointing to. If the HEAD points to a local branch, the branch pointer will

(© 2010 syntevo GmbH, www.syntevo.com 5

Chapter 2. Git-Concepts

be moved forward to the new commit, so also the HEAD indirectly points to the new
commit. If the HEAD points to a commit, the HEAD itself is moved forward to the new
commit.

2.4 Commits

A commit is the equivalent to an SVN revision, a set of changes which are stored in the
repository with a commit message. The Commit command is used to store working tree
changes in the local repository creating a new commit.

2.4.1 1It’s All About Commits

Let’s take a short trip to theory, namely commit graphs. Every repository starts with
the initial commit. Every subsequent commit is directly based on one or more parent
commits. In this way a repository is a commit graph (or more technically speaking: a
directed, acyclic graph of commit-nodes) with every commit being a descendant from the
initial commit. This is the reason why a commit is not just a set of changes, but due to
its fixed location in the commit graph, also specifies a unique repository state.

Each commit can be identified by its unique SHA-ID. Git allows to check out every commit
using its SHA (SmartGit does not require you to enter such hard to remember SHAs, but
instead lets you select commits). Checking out will set the HEAD and working tree to the
commit. Then you may alter the working tree and commit your changes which will create
a new commit to the repository which will have the previously checked out commit as
its parent. Newly created commits are called heads, because there are no other commits
descending from them. This way you are extending the commit graph.

2.4.2 How Things Play Together

The following example shows how commits, branches, pushing, fetching and (basic) merg-
ing play together.

(© 2010 syntevo GmbH, www.syntevo.com 6

Chapter 2. Git-Concepts

Example

Let’s assume we have commits 000, 001 and 002. master and origin/master both
point to 002. HEAD points to master.

Now, let’s commit a set of changes which results in commit 003. Commit 003 is a
child of 002. master will now point to 003, hence it is one commit ahead of the
tracking branch (origin/master).

When performing a Push, Git uses this information and sends 003 to the origin-
repository, moving its master to 003, too. Because a remote branch always refers
to the branch in the remote repository, origin/master of our repository will also
be set to the commit 003.

Now let’s assume someone else has further modified the remote repository and com-
mitted 004 as a child of 003, i.e. the master in the origin-repository points now to
004. When fetching from the origin-repository, we will receive commit 004 and our
repository’s origin/master will be moved to 004.

Finally, we will now merge our local master from its tracking branch
(origin/master). This will simply move master to the commit 004, too.

This was the completely Push-Pull-Merge cycle when working with remote reposi-
tories.

2.5 The Index

The Index is an intermediate “storage” for preparing a commit. Depending on your
personal preferences, SmartGit allows you to make heavy use of the Index or to ignore its
presence at all.

With the Stage command you can save a file’s content from your working tree into the
Index. If you stage a previously version-controlled but in the working tree missing file, it
will be marked for removal. You can do that explicitly using the Remove command, just
as you are accustomed from CVS or SVN. Right-clicking the project root in SmartGit
and selecting Commit will give you the option to commit all staged changes.

If you have staged some file changes and later modified the working tree file again, you
can use the Revert command to either revert the working tree file content to the staged
changes stored in the Index or to the file content stored in the repository (HEAD). The
Changes preview of the SmartGit project window can show the changes between the
HEAD and Index, the HEAD and working tree or the Index and the working tree state
of the selected file.

When unstaging previously staged changes before committing them, the staged changes
will be moved back to the working tree, if the working tree is not modified. The Index
will get the HEAD file content.

(© 2010 syntevo GmbH, www.syntevo.com 7

Chapter 2. Git-Concepts

2.6 Merging and Rebasing

A normal commit has just one parent commit or none in case of the initial commit. A
merge commit has two (or more) parent commits.

Git offers different types of merges. If there are no local changes in the local branch
and you pull remote changes, it is not necessary to create a merge commit. Instead it is
sufficient for Git to just move the local branch pointer forward (fast-forward merge).

Usually, when merging from a different branch and both, the current branch and the
branch to merge contain changes, there are two options to merge: the normal merge and
the squash merge. In case of the normal merge a merge commit with at least two parent
commits (the last from your current branch and the last from the merged branch) is
created. The squash merge will drop the information about the merged branch, just as
you would have modified the working tree manually, and hence create a normal commit.
This is very useful to merge changes from local (features) branches where you don’t want
all your feature branch commits be pushed into the remote repository.

Note Merging is a fundamental concept in Git and SmartGit performs
merges automatically in situations where you might not expect it
at a first glance. For example, if you are working on the master
branch and want to switch to the release-1 branch, SmartGit
merges changes from the tracking branch origin/release-1. So
be aware that a plain switch to a different branch can result in a
merge conflict.

A Git-specific alternative to merging is rebasing (see Section 3.4.5). It can be used to
keep the history linear.

For example, if a user has done local commits and performs a pull with merge, a merge
commit with two parent commits (his last commit and the last commit from the tracking
branch) is created. When using rebase instead of merge, Git applies the local commits
on top of the commits from the tracking branch, thus avoiding a merge commit. As for
merge, this only works if no conflict occurs.

2.7 Working Tree States

Usually, you can commit individual file changes. But there are some situations where this
is not possible, e.g., if a merge has failed with a conflict. In this case you either have
to finish the merge by solving the conflict, staging the file changes and performing the
commit on the working tree root or by reverting the whole working tree.

(© 2010 syntevo GmbH, www.syntevo.com 8

Chapter 2. Git-Concepts

2.8 Submodules

Often, software projects are not completely selfcontained, but they usually share com-
mon parts with other software projects. Git offers a feature called submodules which
allows to integrate directory structures into another directory structure (similar to SVN’s
“externals” feature).

A submodule is a nested repository which is embedded in a dedicated subdirectory of the
working tree (of its parent repository). It is always pointing at a particular commit of
the embedded repository. The definition of the submodule is stored as a separate entry
in the git object database of the parent repository.

The link between working tree entry and foreign repository is stored in the .gitmodules
files of the parent repository. The .gitmodules file is usually versioned, so it can be
maintained by all users respectively changes are propagated to all users.

Submodule repositories are not automatically cloned, but need to be initialized first. The
initialization arranges necessary entries in the .git/config file which can be edited later
by the user, e.g., to fix SSH login names.

2.9 Git-SVN

Git allows not only to communicate with other Git repositories, but also with SVN repos-
itories. This means that you can use SmartGit also as a simple SVN client:
e Cloning from a SVN repository is similar to checking out a SVN working copy.
e Pulling from the SVN repository is similar to updating the SVN working copy.
e Pushing to the SVN repository is similar to committing from the SVN working copy
to the SVN server.

In addition to a normal SVN client, you can use all (local) Git features like local commits
and branching. SmartGit integrates all SVN operations transparently, so you almost
never need to care which server VCS is hosting your main repository.

(© 2010 syntevo GmbH, www.syntevo.com 9

Chapter 3

Important Commands

This chapter gives you an overview of the SmartGit commands.

3.1 Project-Related

A SmartGit project is a named entity which usually has one assigned working tree and
makes working with it easier by remembering a couple of especially GUI related options.
Depending on the selected directory, when cloning or opening a working tree, SmartGit
allows to create a new project, open an existing one for the directory or to add the working
tree to the currently open project.

To group the projects, use Project|Project Manager. To remove a working tree from
a SmartGit project, use Project|Remove Working Tree. If you have moved a working
tree on your hard disk to a new location, SmartGit will let you know when opening the
project that it could not find the working tree. In this case, select the missing working
tree and use Project|Edit to tell SmartGit the new location.

3.1.1 Open Working Tree

Use this command to either open an existing local working tree (e.g. initialized or cloned
with the Git command line client) or initialize a new working tree.

You need to specify the local directory which you want to open. If the specified directory
is not a Git working tree, you have the option to initialize it.

3.1.2 Cloning a Repository

Use this command to clone a repository.

Specify the repository to clone either as a remote URL (e.g. ssh://user@server:port/path)

10

Chapter 3. Important Commands

or, if the repository is locally available in your file system, the file path. In the next step
you have to provide a local path where the clone should be located.

3.2 Synchronizing With a Remote Repository

The following commands can be found in the Remote menu:

3.2.1 Push

Use this command to store local commits to a remote repository.

In case multiple repositories are assigned to your local repository, select the target repos-
itory where you want to store the commits to. Select the local branch(es) for which you
want to push commits. If you try to push commits from a new local branch, you will be
asked whether to create the necessary tracking branch. In most cases it’s recommended
to create the tracking branch, so you will also be able to receive changes from the remote
repository and have Git’s branch synchronization mechanism working here (see Section
2.3).

3.2.2 Pull

Use this command to pull commits from a remote repository.

After successfully fetching the commits of the remote repository, they are stored in the
local branches corresponding to the remote branches. The changes have to be merged
into those local branches either automatically or manually. If the option Merge fetched
remote changes is selected, the merge will happen immediately after fetching. If the
merge worked without any conflicts and the option Commit merged remote changes is
selected, a merge commit is created automatically, otherwise the working tree remains in
merging state.

Alternatively, you can use the Merge (see 3.4.3) command to merge the remote changes
from the remote tracking branch to the local branch.

Note When you fetch submodules the first time, you need to invoke
git submodule init manually for your working tree. Currently,
SmartGit can only fetch submodules after they have been initialized
(git submodule update).

(© 2010 syntevo GmbH, www.syntevo.com 11

Chapter 3. Important Commands

3.2.3 Synchronize

Use this command to store local commits to a remote repository and pull commits at the
same time.

Usually, you have to use the Push (see 3.2.1) and Pull (see 3.2.2) commands to keep your
repository synchronized with a remote repository. Using Synchronize simplifies the task
a little bit.

In the case of local and remote commits, the invoked push command fails. But the pull
command is performed nevertheless, so at least the commits from the remote repository
are available in the tracking branch and are ready to merge or rebase. If the remote
changes were applied to the local branch, you can invoke the Synchronize command
again.

3.3 Local Operations On The Working Tree

These commands can be found in the Local menu.

3.3.1 Stage

Use this command to prepare a commit by saving the current file content state in the
Index (see 2.5) by scheduling an untracked file for adding or a missing file for removing
from the repository.

To commit staged changes, invoke the Commit (see 3.3.4) command on the working tree
root.

3.3.2 Unstage

Use this command to undo a previous Stage (see 3.3.1).

If the file content in the Index is the same as in the working copy, the indexed content
will be restored to the working tree. Otherwise the indexed content will be lost.

3.3.3 Ignore

Use this command to mark untracked files as to be ignored. This is very useful for files
which should not be stored in the repository and ignoring them helps not to forget to add
files which should be stored in the repository. If the menu option View|lgnored Files is
selected, selected files will be shown.

(© 2010 syntevo GmbH, www.syntevo.com 12

Chapter 3. Important Commands

Ignoring a file will write an entry to the .gitignore file in the same directory. Git
supports various options to ignore files, e.g. patterns that apply to files in subdirectories,
too. Using the SmartGit Ignore command only ignores the files in the same directory. To
use the more advanced Git ignore options, you may edit the .gitignore file(s) manually.

3.3.4 Commit

Use this command to save local changes in the local repository.

If the working tree is in merging state (see Section 2.6), you can only commit the whole
working tree. Otherwise, you can select the files to commit (previously tracked, now
missing files will be removed from the repository, untracked new files will be added). If
you have staged (see 3.3.1) changes in the Index, you can commit only these Index changes
by selecting the working tree root before invoking the commit command.

Note If you commit one or more individual files which have both staged
and unstaged changes, all changes will be committed.

While entering the commit message, you can use < Ctri>-+<Space>-keystroke to complete
file names or file paths. Use Select from Log to pick a previous commit message from
the log.

If Amend foregoring commit instead of creating a new one is selected, you can update
the commit message and files of the previous commit, e.g. to fix a typo or add a forgotten

file.

3.3.5 Undo Last Commit

Use this command to undo the last commit. The committed file contents will be stored
in the Index (see 2.5).

Warning! It is strongly recommende not to undo a commit which has already
been pushed!

3.3.6 Revert

Use this command to revert the file content either back to their Index (see 2.5) or reposi-
tory state (HEAD). If the working copy is in merging state use this command on the root
of the working copy to get out of the merging state.

(© 2010 syntevo GmbH, www.syntevo.com 13

Chapter 3. Important Commands

3.3.7 Remove

Use this command to remove files from the local repository and optionally delete them in
the working tree.

If the local file in the working tree is already missing, staging (see 3.3.1) will have the
same effect, but the Remove command also allows to remove files from the repository and
still keeping them locally.

3.3.8 Delete

Use this command to delete local files (or directories) from the working tree.

Warning! Note that the files will not be deleted into the system’s trash, so
restoring the content might be impossible!

3.4 Branch Handling

3.4.1 Switch

Use this command to switch your working tree to a different branch.

If you select a remote branch, you can optionally create a new local branch. Not creating
the local branch will not allow to commit changes afterwards.

Switching to a local branch which has a remote tracking branch will try to merge changes
from the tracking branch after the switch if the option Merge changes from tracking
branch is selected. If this option is not selected, you can later use the Merge command
(see 3.4.3) to merge changes from the tracking branch.

3.4.2 Checkout

Use this command to switch the working tree to a certain commit.

First select the branch which contains the desired commit, then select the commit.

3.4.3 Merge

Use this command to merge changes from another branch to the current branch.

If the current branch has a remote tracking branch, you simply can select Tracking branch
to merge those changes. To merge from any other branch, select Other branch or commit
and pick the commit or branch.

(© 2010 syntevo GmbH, www.syntevo.com 14

Chapter 3. Important Commands

With Fast-forward merge, SmartGit will only update the branch-pointer, if this is possible
(for details refer to Section 2.6). If not possible, this option behaves like Record sources
to prepare real merge commit which will perform the merge, record the source commits
and leave the workspace in merging state. You may then review the merge results, tweak
the merge (if necessary) and finally commit it.

With Don’t record sources to prepare simple commit set, the content will be merged
in the usual way, but the merge sources won’t be recorded. When committing the result,
the merge will show up as a simple commit in the log, i.e. it will have no reference to the
merge source. In this way the merged commits have been condensed into a single commit.

Tip Don’t record sources to prepare simple commit can be useful
to condense a series of intermediate/temporary commits e.g. after
having finished a larger feature.

3.4.4 Cherry Pick

Use this command to merge certain commits to the current branch (actually, cherry-
picking is no real merge as it does not record the source commits).

Commits displayed in grey already belong to the current branch, commits displayed in
black are mergable.

3.4.5 Rebase

Use this command to apply (or rebase) certain commits from one branch to another.

Tip This command is in particular useful to keep the history of a repos-
itory linear.

3.4.6 Add Branch

Use this command to create a branch at the current commit.

3.4.7 Add Tag

Use this command to create a tag at the current commit.

3.4.8 Branch Manager

Use this dialog to get an overview of all branches or to delete some of the branches.

(© 2010 syntevo GmbH, www.syntevo.com 15

Chapter 4

System properties/VM options

Some very fundamental options, which have to be known early at startup time or which
typically need not to be changed are specified by Java VM options instead of SmartGit
preferences.

Options suppied to the VM are either actual standard or non-standard options, like —Xmx
to set the maximum memory limit, or system properties, typically prefixed by -D. This
chapter is mainly about SmartGit-specific system properties.

4.1 General properties

Following general purpose properties are supported by SmartGit.

smartgit.home

This propery specifies the directory into which SmartGit will put its configuration files;

refer to Section 5 for details. The value of smartgit.home may also contain other default

Java system properties, like user.home. It may also contain the special smartgit.installation
property, which refers to the installation directory of SmartGit.

Example
To store all settings into the subdirectory .settings of SmartGit’s installation
directory, you can set smartgit.home=${smartgit.installation}\.settings.

16

Chapter 4. System properties/VM options

4.2 User interface properties

smartgit.splashScreen.show

This property specifies whether to show the splash screen on startup or not. It defaults
to true.

Example
Use smartgit.splashScreen.show=false to disable the splash screen.

4.3 Specifying VM options and system properties

Depending on your operating system, VM options resp. system properties are specified
in different ways.

smartgit.properties file

The smartgit.properties file is present on all operating systems. It’s located in Smart-
Git’s settings directory; refer to Section 4.1 for details. All system properties can be
specified in this file.

Note System properties are VM options which would be specified by the
-D prefix when directly providing them with the start of the java
process. All options listed in this chapter are system properties and
hence can be specified in the smartgit.properties file.

« 2

Every option is specified on a new line, with its name followed by a “=" and the corre-
sponding value.

Example Add
smartgit.splashScreen.show=false

to disable the splash screen.

Microsoft Windows

VM options are specified in bin/smartgit.vmoptions within the installation directory of
SmartGit. You can also specify system properties by adding a new line with the property
name, prefixed by -D, and appending = and the corresponding property value.

(© 2010 syntevo GmbH, www.syntevo.com 17

Chapter 4. System properties/VM options

Example Add the line
-Dsmartgit.splashScreen.show=false

to disable the splash screen.

Apple Mac OS X

System properties are specified in the Info.plist file. Right click the SmartGit.app in
the Finder and select Show Package Contents, double click the Contents directory and
there you will find the Info.plist file. Open it in a text editor of your choice. Specify the
system properties as key-string pairs in the dict-tag after the key with the Properties
content.

Example Use the following key-string pairs

<key>Properties</key>
<dict>

<key>smartgit.splashScreen.show</key>
<string>false</string>

</dict>

to disable the splash screen.

Specify a VM option by placing them in the string-tag to the VMOptions array.

Unix

System properties are specified e.g. in bin/smartgit.sh within the installation directory
of SmartGit. You can specify a property by adding the property name, prefixed by -D and
appending = and the corresponding property value to the -VM_PROPERTIES environment

variable. Multiple properties are simply separated by a whitespace; make sure to use
quotes when specifying several properties.

Example Add
_VM_PROPERTIES="$_VM_PROPERTIES -Dsmartgit.splashScreen.show=false"

before the $_JAVA EXEC to disable the splash screen.

(© 2010 syntevo GmbH, www.syntevo.com 18

Chapter 5

Installation and Files

SmartGit stores its configuration files per-user. The root directory of SmartGit’s con-
figuration area contains subdirectories for every major SmartGit version, so you can use
multiple versions concurrently. The location of the configuration root directory depends
on the operating system.

5.1 Location of SmartGit’s settings directory

e Windows:: The configuration files are located below %APPDATAY,\syntevo\SmartGit.
e Mac OS:: The configuration files are located below ~/Library/Preferences/SmartGit.

e Unix/Other:: The configuration files are located below ~/.smartgit.

Tip You can change the directory where the configuration files are
stored by the system property smartgit.home (see 4.1).

5.2 Notable configuration files

e accelerators.xml stores the accelerators configuration.

e credentials.xml stores authentication information, except the corresponding pass-
words.

e license stores your SmartGit’s license key.
e log.txt contains debug log information. It’s configured via log4j.properties.
e passwords is an encrypted file and stores the passwords used throughout SmartGit.

e projects.xml stores all configured projects including their settings.

19

Chapter 5. Installation and Files

e settings.xml stores the application-wide Preferences of SmartGit.

e uiSettings.xml stores the context menu configuration.

5.3 Company-wide installation

For company-wide installations, the administrator can install SmartGit on a network
share. To make deployment and initial configuration for the users easier, certain config-
uration files can be prepared and put into the subdirectory default (within SmartGit’s
installation directory).

When a user starts SmartGit for the first time, following files will be copied from the
default directory to his private configuration area:

e accelerators.xml

credentials.xml

projects.xml

settings.xml

uiSettings.xml

The license file (only for Enterprise licenses and 10+ users Professional licenses) can
also be placed into the default directory. In this case, SmartGit will prefill the License
field in the Set Up wizard when a user starts Smartgit for the first time. When upgrading
SmartGit, this 1icense file will also be used, so users won’t be prompted with a “license
expired” message, but can continue working seamlessly.

Note Typically, you will receive license files from us wrapped into a ZIP
archive. In this case you have to unzip the contained license file
into the default directory.

5.4 JRE search order (Windows)

On Windows, the smartgit.exe launcher will search for an appropriate JRE in the
following order (from top to bottom):

e Environment variable SMARTGIT_JAVA_HOME
e Sub-directory jre within SmartGit’s installation directory

e Environment variable JAVA_HOME

(© 2010 syntevo GmbH, www.syntevo.com 20

Chapter 5. Installation and Files

e Environment variable JDK_HOME
e Registry key HKEY_LOCAL_MACHINE\SOFTWARE\ JavaSoft\ Java Runtime En-

vironment

(© 2010 syntevo GmbH, www.syntevo.com 21

	Introduction
	Git-Concepts
	Repository, Working Tree, Commit
	Typical Project Life-Cycle
	Branches
	Working With Branches
	Branches Are Just Pointers

	Commits
	It's All About Commits
	How Things Play Together

	The Index
	Merging and Rebasing
	Working Tree States
	Submodules
	Git-SVN

	Important Commands
	Project-Related
	Open Working Tree
	Cloning a Repository

	Synchronizing With a Remote Repository
	Push
	Pull
	Synchronize

	Local Operations On The Working Tree
	Stage
	Unstage
	Ignore
	Commit
	Undo Last Commit
	Revert
	Remove
	Delete

	Branch Handling
	Switch
	Checkout
	Merge
	Cherry Pick
	Rebase
	Add Branch
	Add Tag
	Branch Manager

	System properties/VM options
	General properties
	User interface properties
	Specifying VM options and system properties

	Installation and Files
	Location of SmartGit's settings directory
	Notable configuration files
	Company-wide installation
	JRE search order (Windows)

