
SmartGit Quickstart Guide

syntevo GmbH, www.syntevo.com

2012

Contents

1 Introduction 4

2 Git Concepts 5
2.1 Repository, Working Tree, Commit . 5
2.2 Typical Project Life Cycle . 5
2.3 Branches . 6

2.3.1 Working with Branches . 6
2.3.2 Branches are just Pointers . 7

2.4 Commits . 7
2.4.1 It’s All About Commits . 7
2.4.2 Putting It All Together . 8

2.5 The Index . 9
2.6 Merging and Rebasing . 10

2.6.1 “Normal” Merge . 10
2.6.2 Fast-forward Merge . 10
2.6.3 Squash Merge . 11

2.7 Working Tree States . 11
2.8 Submodules . 11
2.9 Git-SVN . 12

3 Important Commands 13
3.1 Project-Related . 13

3.1.1 Open Repository . 13
3.1.2 Cloning a Repository . 13

3.2 Synchronizing with a Remote Repository 14
3.2.1 Push . 14
3.2.2 Pull . 14
3.2.3 Synchronize . 14

3.3 Local Operations on the Working Tree . 15
3.3.1 Stage . 15
3.3.2 Unstage . 15
3.3.3 Ignore . 15
3.3.4 Commit . 15
3.3.5 Undo Last Commit . 16
3.3.6 Edit Last Commit Message . 16

1

Contents

3.3.7 Discard . 16
3.3.8 Remove . 17
3.3.9 Delete . 17

3.4 Branch Handling . 17
3.4.1 Switch . 17
3.4.2 Check Out . 17
3.4.3 Merge . 18
3.4.4 Rebase . 18
3.4.5 Add Branch . 19
3.4.6 Add Tag . 19
3.4.7 Branch Manager . 19

4 Directory tree and file table 20

5 Advanced Settings 23
5.1 System Properties . 23
5.2 Command-Line Options . 24

5.2.1 Options ”-?” and ”–help” . 24
5.2.2 Option ”–cwd” . 25
5.2.3 Option ”–open” . 25
5.2.4 Option ”–log” . 25

5.3 Location of the Settings Directory . 26
5.3.1 Windows . 26
5.3.2 Linux . 27

5.4 Memory Limit . 27

6 Installation and Files 28
6.1 Default Location of SmartGit’s Settings Directory 28
6.2 Notable Files in the Settings Directory . 28
6.3 Company-wide Installation . 29
6.4 JRE Search Order (Windows) . 30

7 Internals of the SVN integration 31
7.1 Compatibility and incompatibility modes 31
7.2 Ignores (normal mode only) . 31
7.3 EOLs (normal mode only) . 32
7.4 Externals (normal mode only) . 33
7.5 Symlinks and executable files . 34
7.6 Tags . 35
7.7 History processing . 35

7.7.1 Branch replacements . 35
7.7.2 Merges . 35
7.7.3 Cherry-picks . 36
7.7.4 Branch creation . 36
7.7.5 Anonymous branches . 36

7.8 The Pushing process . 37

c© 2012 syntevo GmbH, www.syntevo.com 2

Contents

7.9 Non-ASCII symbols support . 38
7.10 SVN support configuration . 38

7.10.1 SVN URL and SVN layout specification 38
7.10.2 Translation options . 39
7.10.3 Tracking configuration . 40

7.11 Known limitations . 40

c© 2012 syntevo GmbH, www.syntevo.com 3

Chapter 1

Introduction

SmartGit is a graphical Git client which runs on all major platforms. Git is a distributed
version control system (DVCS). SmartGit’s target audience are users who need to manage
a number of related files in a directory structure, to coordinate access to these files in
a multi-user environment, and to track changes to them. Typical areas of application
include software projects, documentation projects and website projects.

Acknowledgments

We would like to thank all users who have given us feedback on SmartGit (e.g. via bug
reports and feature suggestions) and thereby helped us to improve it.

4

Chapter 2

Git Concepts

This section helps you to get started with Git and tries to give you an understanding of
some fundamental Git concepts.

2.1 Repository, Working Tree, Commit

First, we need to introduce some Git-specific terms which may have different meanings
in other version control systems such as Subversion.

Classical centralized version control systems such as Subversion (SVN) have so-called
‘working copies’, each of which corresponds to exactly one repository. SVN working
copies can correspond to the entire repository or just to parts of it. In Git, on the other
hand, everything is a repository, even the local “working copy”, which is always a complete
repository, not just a partial one. Git’s working tree is the directory where you can edit
files. Each working tree has its corresponding repository. So-called bare repositories, used
on servers as central repositories, don’t have a working tree.

Example
Let’s assume you have all your project-related files in a directory D:\my-project.
Then this directory represents the working tree, containing all files to edit. The
attached repository (or more precisely, the repository’s meta data) is located in the
D:\my-project\.git directory.

2.2 Typical Project Life Cycle

As with all version control systems, there typically exists a central repository containing
the project files. To create a local repository, you need to clone the remote central
repository. Then the local repository is connected to the remote repository, which, from
the local repository’s point of view, is referred to as origin. The cloning step is analogous
to the initial SVN checkout for getting a local working copy.

5

Chapter 2. Git Concepts

Having created the local repository containing all project files from origin, you can now
make changes to the files in the working tree and commit these changes. They will be
stored in your local repository only, so you don’t even need access to a remote repository
when committing. Later on, after you have committed a couple of changes, you can push
(see 3.2.1) them to the remote repository. Other users who have their own clones of
the origin repository can pull (see 3.2.2) from the remote repository to get your pushed
changes.

2.3 Branches

Branches can be used to store independent series of commits in the repository, e.g., to fix
bugs for a released software project while simultaneously developing new features for the
next project version.

Git distinguishes between two kinds of branches: local branches and remote branches. In
the local repository, you can create as many local branches as you like. Remote branches,
on the other hand, are local branches of the origin repository. In other words: Cloning
a remote repository clones all its local branches which are then stored in your local
repository as remote branches. You can’t work directly on remote branches, but have to
create local branches, which are “linked” to the remote branches. The local branch is
called tracking branch, and the corresponding remote branch tracked branch. There can
be independent local branches and tracking branches.

The default local main branch created by Git is named master, which is analogous to
SVN’s trunk. When cloning a remote repository, the master tracks the remote branch
origin/master.

2.3.1 Working with Branches

When you push changes from your local branch to the origin repository, these changes will
be propagated to the tracked (remote) branch as well. Similarly, when you pull changes
from the origin repository, these changes will also be stored in the tracked (remote)
branch of the local repository. To get the tracked branch changes into your local branch,
the remote changes have to be merged from the tracked branch. This can be done either
directly when invoking the Pull command in SmartGit, or later by explicitly invoking the
Merge command. An alternative to the Merge command is the Rebase command.

Tip The method to be used by Pull (either Merge or Rebase) can be
configured in Project|Repository Settings on the Pull tab.

c© 2012 syntevo GmbH, www.syntevo.com 6

Chapter 2. Git Concepts

2.3.2 Branches are just Pointers

Every branch is simply a named pointer to a commit. A special unique pointer for every
repository is the HEAD which points to the commit the working tree state currently
corresponds to. The HEAD cannot only point to a commit, but also to a local branch,
which itself points to a commit. Committing changes will create a new commit on top
of the commit or local branch the HEAD is pointing to. If the HEAD points to a local
branch, the branch pointer will be moved forward to the new commit; thus the HEAD
will also indirectly point to the new commit. If the HEAD points to a commit, the HEAD
itself is moved forward to the new commit.

2.4 Commits

A commit is the Git equivalent of an SVN revision, i.e., a set of changes that is stored
in the repository along with a commit message. The Commit command is used to store
working tree changes in the local repository, thereby creating a new commit.

2.4.1 It’s All About Commits

Since every repository starts with an initial commit, and every subsequent commit is
directly based on one or more parent commits, a repository forms a “commit graph” (or
technically speaking, a directed, acyclic graph of commit nodes), with every commit being
a direct or indirect descendant of the initial commit. Hence, a commit is not just a set
of changes, but, due to its fixed location in the commit graph, also represents a unique
repository state.

Normal commits have exactly one parent commit, the initial commit has no parent com-
mits, and the so-called merge commits have two or more parent commits.

o ... a merge commit

| \

| o ... a normal commit

| |

o | ... another normal commit

| /

o ... yet another normal commit which has been branched

|

o ... the initial commit

Each commit is identified by its unique SHA-ID, and Git allows checking out every commit
using its SHA. However, with SmartGit you can visually select the commits to check out,
instead of entering these unwieldy SHAs by hand. Checking out will set the HEAD and

c© 2012 syntevo GmbH, www.syntevo.com 7

Chapter 2. Git Concepts

working tree to the commit. After having modified the working tree, committing your
changes will produce a new commit whose parent will be the commit that was checked out.
Newly created commits are called heads because there are no other commits descending
from them.

2.4.2 Putting It All Together

The following example shows how commits, branches, pushing, fetching and (basic) merg-
ing play together.

Let’s assume we have commits A, B and C. master and origin/master both point to C,
and HEAD points to master. In other words: The working tree has been switched to the
branch master. This looks as follows:

o [> master][origin/master] C

|

o B

|

o A

Committing a set of changes results in commit D, which is a child of C. master will now
point to D, hence it is one commit ahead of the tracked branch origin/master:

o [> master] D

|

o [origin/master] C

|

o B

|

o A

As a result of a Push, Git sends the commit D to the origin repository, moving its master
to the new commit D. Because a remote branch always refers to a branch in the remote
repository, origin/master of our repository will also be set to the commit D:

o [> master][origin/master] D

|

o C

|

o B

|

o A

c© 2012 syntevo GmbH, www.syntevo.com 8

Chapter 2. Git Concepts

Now let’s assume someone else has further modified the remote repository and committed
E, which is a child of D. This means the master in the origin repository now points to E.
When fetching from the origin repository, we will receive commit E and our repository’s
origin/master will be moved to E:

o [origin/master] E

|

o [> master] D

|

o C

|

o B

|

o A

Finally, we will now merge our local master with its tracking branch origin/master.
Because there are no new local commits, this will simply move master forward to the
commit E (see Section 2.6.2).

o [> master][origin/master] E

|

o D

|

o C

|

o B

|

o A

This brief example has shown you a complete Push-Pull-Merge cycle for working with
remote repositories.

2.5 The Index

The Index is an intermediate cache for preparing a commit. With SmartGit, you can
make heavy use of the Index, or ignore its presence completely - it’s all up to you.

The Stage command allows you to save a file’s content from your working tree in the
Index. If you stage a file that was previously version-controlled, but is now missing in
the working tree, it will be marked for removal. Explicitly using the Remove command
has the same effect, as you may be accustomed to from SVN. If you select a file that has
Index changes, invoking Commit will give you the option to commit all staged changes.

c© 2012 syntevo GmbH, www.syntevo.com 9

Chapter 2. Git Concepts

If you have staged some file changes and later modified the working tree file again, you
can use the Discard command to either revert the working tree file content to the staged
changes stored in the Index, or to the file content stored in the repository (HEAD). The
Changes preview of the SmartGit project window can show the changes between the
HEAD and the Index, between the HEAD and the working tree, or between the Index
and the working tree state of the selected file.

When unstaging previously staged changes, the staged changes will be moved back to the
working tree, if the latter hasn’t been modified in the meantime, otherwise the staged
changes will be lost. In either case, the Index will be reverted to the HEAD file content.

2.6 Merging and Rebasing

2.6.1 “Normal” Merge

Usually, when merging from a different branch and both the current branch and the branch
to merge contain changes, there are two different ways to merge: the normal merge and
the squash merge. In case of a normal merge, a merge commit with at least two parent
commits (i.e., the last from the current branch and the last from the merged branch) is
created. See the following figure, where > indicates where the HEAD is pointing to:

o [> master]

|\

o [> master] o \

| ==> | |

| o [a-branch] | o [a-branch]

. . . .

2.6.2 Fast-forward Merge

A special case is that if the current branch has not diverted from the branch to be merged
in and is just a few commits behind, it is sufficient to move the current branch pointer
forward. No additional commits need to be created.

o [origin/master] o [> master][origin/master]

| ==> |

o [> master] o

. .

c© 2012 syntevo GmbH, www.syntevo.com 10

Chapter 2. Git Concepts

2.6.3 Squash Merge

The squash merge works like a normal merge, except that it drops the information about
which branch the changes came from. Hence it only allows you to create normal commits.
The squash merge is useful for merging changes from local (feature) branches where you
don’t want all of your feature branch commits to be pushed into the remote repository.

o [> master] (this commit will contain changes

| from a-branch)

o [> master] o

| ==> |

| o [a-branch] | o [a-branch]

. . . .

Note Merging is a fundamental concept in Git, and SmartGit performs
merges automatically in situations where you might not expect
them. For example, if you are working on the master branch and
want to switch to the release-1 branch, SmartGit merges changes
from the tracking branch origin/release-1. So keep in mind
that a seemingly simple switch to a different branch may result in
a merge conflict.

A Git-specific alternative to merging is rebasing (see Section 3.4.4), which can be used to
keep the history linear.

For example, if a user has done local commits and performs a pull with merge, a merge
commit with two parent commits - his last commit and the last commit from the tracking
branch - is created. When using rebase instead of merge, Git applies the local commits
on top of the commits from the tracking branch, thus avoiding a merge commit. Note
that if no conflict occurs.

2.7 Working Tree States

There are some particular situations where commits cannot be performed, for instance
when a merge has failed due to a conflict. In this case, there are two ways to finish
the merge: Either by resolving the conflict, staging the file changes and performing the
commit on the working tree root, or by reverting the whole working tree.

2.8 Submodules

Often, software projects are not completely self-contained, but share common parts with
other software projects. Git offers a feature called submodules, which allows you to embed

c© 2012 syntevo GmbH, www.syntevo.com 11

Chapter 2. Git Concepts

directory structures into another directory structure, which is similar to SVN’s “externals”
feature.

A submodule is a nested repository that is embedded in a dedicated subdirectory of the
working tree (which belongs to the parent repository). The submodule is always pointing
at a particular commit of the embedded repository. The definition of the submodule is
stored as a separate entry in the parent repository’s git object database.

The link between working tree entry and foreign repository is stored in the .gitmodules

files of the parent repository. The .gitmodules file is usually versioned, so it can be
maintained by all users and/or changes are propagated to all users.

Submodule repositories are not automatically cloned, but need to be initialized first. The
initialization arranges necessary entries in the .git/config file, which can be edited later
by the user, e.g., to fix SSH login names.

2.9 Git-SVN

Git allows you to interact not only with other Git repositories, but also with SVN repos-
itories. This means you can use SmartGit as a simple SVN client:

• Cloning from an SVN repository is similar to checking out an SVN working copy.

• Pulling from an SVN repository is similar to updating an SVN working copy.

• Pushing to an SVN repository is similar to committing from an SVN working copy
to the SVN server.

In addition to the usual SVN client features, you can use all (local) Git features like local
commits and branching. SmartGit performs all SVN operations transparently, so you
almost never have to care which server VCS is hosting your main repository.

c© 2012 syntevo GmbH, www.syntevo.com 12

Chapter 3

Important Commands

This chapter gives you an overview of important SmartGit commands.

3.1 Project-Related

A SmartGit project is a named entity with one local repository assigned to it. For greater
user convenience, a couple of (primarily) GUI-related options are stored in the SmartGit
project. Depending on the selected directory, when cloning or opening a local repository,
SmartGit allows creating a new project, opening an existing one in the selected directory
or adding the repository to the currently open project.

To group projects, use Project|Open or Manage Projects. To remove a repository from
a SmartGit project, use Project|Remove Repository.

3.1.1 Open Repository

Use Project|Open Repository to either open an existing local repository (e.g. initialized
or cloned with the Git command line client) or to initialize a new repository.

You need to specify which local directory you want to open. If the specified directory is
not a Git or Mercurial repository yet, you have the option to initialize it.

3.1.2 Cloning a Repository

Use Project|Clone to create a clone of another Git, Mercurial or SVN repository.

Specify the repository to clone either as a remote URL (e.g. ssh://user@server:port/path),
or, if the repository is locally available on your file system, as a file path. In the next step
you have to provide the path to the local directory where the clone should be created.

13

Chapter 3. Important Commands

3.2 Synchronizing with a Remote Repository

The following commands can be found in the Remote menu:

3.2.1 Push

Use Remote|Push or Remote|Push Advanced to send local commits to a remote repos-
itory.

Remote|Push can only push the current branch or changes in all tracking branches to
the origin repository, but works for multiple repositories.

Remote|Push Advanced only works for one repository. In case multiple remote reposito-
ries are associated with your local repository, you have to select one of them as the target
repository to push the local commits to. Select the local branches or tags for which you
want to push commits. If you try to push commits from a new local branch, you will be
asked whether to set up tracking for the newly created remote branch. In most cases it is
recommended to set up tracking, as it will allow you to receive changes from the remote
repository and make use of Git’s branch synchronization mechanism (see Section 2.3).

3.2.2 Pull

Use Remote|Pull to fetch commits from a remote repository and “integrate” (i.e. merge
or rebase) them into the local branch.

After the commits have been successfully fetched from the remote repository, they are
stored in the remote branches. The changes have to be merged or rebased into the lo-
cal branches, which can be done either automatically or manually. If the option Merge
fetched remote changes is selected, a merge is performed automatically after fetch-
ing. Similarly, if the option Rebase local branch onto fetched changes is selected, a
rebase is performed automatically after fetching. In case of conflicts, the repository re-
mains in merging or rebasing state, respectively. To change the default behavior, go to
Project|Repository Settings.

Alternatively, you can use the Merge (see 3.4.3) command to manually merge the remote
changes from the tracked remote branch into the local branch.

3.2.3 Synchronize

With the Synchronize command, you can push local commits to a remote repository and
pull commits from that repository at the same time. This simplifies the common work-
flow of separately invoking Push (see 3.2.1) and Pull (see 3.2.2) to keep your repository
synchronized with the remote repository.

c© 2012 syntevo GmbH, www.syntevo.com 14

Chapter 3. Important Commands

If the synchronize command is invoked and there are both local and remote commits, the
invoked push operation fails. The pull operation on the other hand is performed even in
case of failure, so that the commits from the remote repository are available in the tracked
branch, ready to be merged or rebased. After the remote changes have been applied to
the local branch, you may invoke the Synchronize command again.

3.3 Local Operations on the Working Tree

These commands can be found in the Local menu.

3.3.1 Stage

Use this command to prepare a commit, either by saving the current file content state in
the Index (see 2.5), by scheduling an untracked file for addition to the repository, or by
scheduling a missing file for removal from the repository.

To commit staged changes, invoke the Commit (see 3.3.4) command on the working tree
root.

3.3.2 Unstage

Use this command to undo a previous Stage (see 3.3.1). The Unstage command will
discard the selected changes in the Index, meaning that the index changes will be lost,
unless they are identical to the current changes in the working copy.

3.3.3 Ignore

Use this command to mark untracked files as to be ignored. This is useful to distinguish
purely local files which should never be stored in the repository from locally created files
which show up as untracked and should be stored in the repository for the next commit.
If the menu option View|Show Ignored Files is selected, ignored files will be shown.

Ignoring a file will write an entry to the .gitignore file in the same directory. Git
supports various options to ignore files, e.g. patterns that apply to files in subdirectories.
With the SmartGit Ignore command you can only ignore files in the same directory. To
use the more advanced Git ignore options, you may edit the .gitignore file(s) by hand.

3.3.4 Commit

Use this command to save local changes in the local repository.

c© 2012 syntevo GmbH, www.syntevo.com 15

Chapter 3. Important Commands

If the working tree is in merging state (see Section 2.6), you can only commit the whole
working tree. Otherwise, you can select the files to commit. Previously tracked, but now
missing files will be removed from the repository, and untracked new files will be added.
If you have staged (see 3.3.1) changes in the Index, you can commit them by selecting at
least one file with Index changes or by selecting the working tree root before invoking the
commit command.

Note If you commit one or more individual files which have both staged
and unstaged changes, the entire working tree state will be com-
mitted.

While entering the commit message, you can use <Ctrl>+<Space>-keystroke to complete
file names or file paths. Use Select from Log to pick a commit message or SHA ID from
the log.

If Amend last commit instead of creating a new one is selected, you can update the
commit message and files of the previous commit, e.g. to fix a typo or to add a forgotten
file.

If a normal merge (see 2.6.1) has been performed before, you will have the option to create
a merge commit or normal commit. See Section 2.6.1 and Section 2.6.3 for details.

3.3.5 Undo Last Commit

Use this command to undo the last commit. The committed file contents will be stored
in the Index (see 2.5).

Warning! Don’t undo an already pushed commit unless you know exactly
what you are doing! Otherwise you need to force pushing your local
changes, which might discard other users’ commits in the remote
repository.

3.3.6 Edit Last Commit Message

Use this command to edit the commit message of the last commit.

3.3.7 Discard

Use this command to revert the file contents either back to their Index (see 2.5) or back to
their repository state (HEAD). If the working copy is in merging state, use this command
on the root of the working copy to get out of the merging state.

c© 2012 syntevo GmbH, www.syntevo.com 16

Chapter 3. Important Commands

3.3.8 Remove

Use this command to remove files from the local repository and optionally delete them in
the working tree.

If the local file in the working tree is already missing, staging (see 3.3.1) will have the
same effect, but the Remove command also allows you to remove files from the repository
while keeping them locally.

3.3.9 Delete

Use this command to delete local files (or directories) from the working tree.

Warning! Note that the files will not be moved to the system’s trash bin, so
restoring the content afterwards may not be possible!

3.4 Branch Handling

3.4.1 Switch

Use this command to switch your working tree to a different branch.

If you select a remote branch, you can optionally create a new local branch (recom-
mended).

If you switch to a local branch which has a remote tracking branch and the option Fast-
forward-merge changes from tracked branch is selected, SmartGit will additionally
attempt a fast-forward merge with the changes from the tracked branch after switching.
If the aforementioned option is not selected, you can later use the Merge command (see
3.4.3) to merge changes from the tracking branch.

If you select the option Throw away local changes, any local changes you may currently
have in your working tree will be discarded during the switch operation.

3.4.2 Check Out

Use this command to switch the working tree to a certain commit. If you select a commit
where local branches point to, you will have the option to switch to these branches. If
you select a commit where remote branches without corresponding local branches point
to, you will have the option to create a corresponding local branch.

If you select the option Throw away local changes, any local changes you may currently
have in your working tree will be discarded during the checkout operation.

c© 2012 syntevo GmbH, www.syntevo.com 17

Chapter 3. Important Commands

3.4.3 Merge

Use this command to merge changes from another branch to the current branch.

Select the option Branch consisting of selected commit and its ancestors to prepare
a normal merge (see 2.6.1). This will leave your working tree in merging state to let
you review or tweak the changes. When performing a commit (see 3.3.4), you will have
the option to create a merge commit or a simple commit (Section 2.6.3). Also select
the option If possible, just move the branch pointer forward, if instead of preparing a
merge commit, the current branch pointer should just move forward (Section 2.6.2).

Select the option Only the selected commits to cherry-pick one or more commits into
the working tree. This will not prepare a merge commit, so there will be no corresponding
option on the commit either. If you also select the option Apply changes in reverse,
the selected commit will be reverted in the working tree. Use this to undo the changes
introduced by the selected commit.

3.4.4 Rebase

Use this command to apply commits from one branch to another.

Select the option Current branch onto its tracked branch (e.g. after having fetched
remote changes) to apply your recent local commits onto the tracked branch. This com-
mand is a shortcut for the option HEAD commits to selected commit and selecting
the commit with the tracked branch. Use this option to keep the history of your reposi-
tory linear. This option is only enabled if your local branch is lagging behind its tracked
remote branch.

Select the option Selected commit(s) to HEAD, click Next and select a commit (or a
commit range, i.e. start and end) to apply the commits to the current branch.

o [> master] B’

|

o C’

|

o D’

|

o [> master] A o A

| |

| o [a-branch] | o [a-branch]

| | | |

| o B (selected) | o B

| | | |

| o C ==> | o C

| | | |

| o D | o D

c© 2012 syntevo GmbH, www.syntevo.com 18

Chapter 3. Important Commands

| / | /

| / | /

o o

Select the option HEAD commits to selected commit, click Next and select the commit
to which you want to apply the last commits of the current branch.

o [> master] A’ o [> master] A’

| |

o B’ o B’

| |

o D’ o D’

| |

o [> master] A o A | |

| . | |

| o [a-branch] . o | [a-branch] | o [a-branch]

| | . | | | |

o | B o | / B | /

| | . | / /\ | /

| o C (selected) ===> . o C == o

| | rebase . | hiding |

o | D o | D lost commits |

| / . / |

| / . / |

o o o

3.4.5 Add Branch

Use this command to create a branch at the current commit.

3.4.6 Add Tag

Use this command to create a tag at the current commit.

3.4.7 Branch Manager

Use this dialog to get an overview of all branches or to delete some of the branches. The
dialog also allows you to set up tracking: Select a local non-tracking branch and a remote
branch, then use the context menu entries Set Tracked Branch and Reset Tracked
Branch.

c© 2012 syntevo GmbH, www.syntevo.com 19

Chapter 4

Directory tree and file table

The directory tree and the file table display the status of your working tree (and Index).
The primary directory states are listed in Table 4.1, and possible states of submodules in
Table 4.2. Every primary and submodule state may be combined with additional states,
which are listed in Table 4.3. The possible file states are listed in Table 4.4.

Icon State Details

Default Directory is present in the repository (more precisely: there
is at least one versioned file below this directory stored in the
repository).

Unversioned Directory (and contained files) are present in the working
tree, but have not been added to the repository yet. Use
Stage to add the files to the repository.

Ignored Directory is not present in the repository (exists only in the
working tree) and is marked as to be ignored.

Missing Directory is present in the repository, but does not exist in
the working tree. Use Stage to remove the files from the
repository or Discard to restore them in the working tree.

Conflict Repository contains conflicting files (only displayed on the
root directory). Use Resolve to resolve the conflict.

Merge Repository is in ’merging’ or ’rebasing’ state (only displayed
on the root directory). Either Commit the merge/rebase or
use Discard to cancel the merge/rebase.

Root/Submodule Directory is either the project root or a submodule root, see
Table 4.2.

Figure 4.1: Primary Directory States

20

Chapter 4. Directory tree and file table

Icon State Details

Submodule Unchanged submodule.

Modified in working tree Submodule in working tree points to a different
commit than the one registered in the repository.
Use Stage to register the new commit in the Index,
or Reset to reset the submodule to the commit reg-
istered in the repository.

Modified in Index Submodule in working tree points to a different
commit than the one registered in the repository,
and this changed commit has been staged to the In-
dex. Commit this change or use Discard to revert
the Index.

Modified in WT and Index Submodule in working tree points to a different
commit than the one in the Index, and the staged
commit in the Index is different from the one in
the repository. Use either Stage to register the
changed commit in the Index (overwriting the In-
dex change), Discard to revert the Index, or Reset
to reset the submodule to the commit registered in
the Index.

Foreign repository Nested repository is not registered in the parent
repository as submodule. Use Stage to register
(and add) the submodule to the parent repository.

Figure 4.2: Submodule States

Icon State Details

Direct Local Changes There are local (or Index) changes within the directory
itself.

Indirect Local Changes There are local (or Index) changes in one of the subdi-
rectories of this directory.

Figure 4.3: Additional Directory States

c© 2012 syntevo GmbH, www.syntevo.com 21

Chapter 4. Directory tree and file table

Icon State Details

Unchanged File is under version control and neither modified in
working tree nor in Index.

Unversioned File is not under version control, but only exists
in the working tree. Use Stage to add the file or
Ignore to ignore the file.

Ignored File is not under version control (exists only in the
working tree) and is marked to be ignored.

Modified File is modified in the working tree. Use Stage
to add the changes to the Index or Commit the
changes immediately.

Modified (Index) File is modified and the changes have been staged to
the Index. Either Commit the changes or Unstage
changes to the working tree.

Modified (WT and Index) File is modified in the working tree and in the Index
in different ways. You may Commit either Index
changes or working tree changes.

Added File has been added to Index. Use Unstage to re-
move from the Index.

Removed File has been removed from the Index. Use Unstage
to un-schedule the removal from the Index.

Missing File is under version control, but does not exist in
the working tree. Use Stage or Remove to remove
from the Index or Discard to restore in the wirking
tree.

Modified (Added) File has been added to the Index and there is an ad-
ditional change in the working tree. Use Commit to
either commit just the addition or commit addition
and change.

Intent-to-Add File is planned to be added to the Index. Use Add
or Stage to add actually or Discard to revert to
unversioned.

Conflict A merge-like command resulted in conflicting
changes. Use the Conflict Solver to fix the con-
flicts.

Figure 4.4: File States

c© 2012 syntevo GmbH, www.syntevo.com 22

Chapter 5

Advanced Settings

In addition to the options on the preferences dialog, SmartGit has some advanced settings
that can be set through a configuration file named smartgit.properties or through
command-line parameters. Both are covered in the following subsections.

Moreover, there are two special settings, the location of the settings directory and the
program’s memory limit, the latter involving the file smartgit.vmoptions. Both of these
special settings will be described in their own subsections.

Note The files smartgit.properties and smartgit.vmoptions contain
only settings for SmartGit itself. If you want to configure your
Git repositories, have a look at the various Git configuration files
instead, such as .git/config for the configuration of individual
Git repositories, and C:\Users\[UserName]\.gitconfig for global
configuration.

5.1 System Properties

SmartGit can be configured by editing the file smartgit.properties in the settings
folder. The smartgit.properties file contains further documentation about the available
settings, so the latter will not be listed here. In this section, we will only show an example
in order to give a general idea of how to alter settings in the smartgit.properties file.

First, open the settings directory. Its default location is described in Section 6.1. In the
settings directory, you will find the smartgit.properties file. Open it with a text editor,
such as Windows Notepad.

Each of the settings in smartgit.properties is specified on a separate line, according
to the following syntax: key=value

If a line starts with #, the entire line is treated as a comment and ignored by the program.
By default, the available settings are prefixed with a #, so that their default values will

23

Chapter 5. Advanced Settings

be used. To alter a setting, uncomment it by removing the # character and modify the
setting’s value as needed.

Example
In the smartgit.properties file, uncomment the following line in order to disable
the splash screen:
#smartgit.ui.splashscreen=false

5.2 Command-Line Options

This section gives an overview of the various options SmartGit can be started with. These
options should be given as parameters to the SmartGit launcher. The launcher to be used
depends on your platform:

• Windows: bin\smartgit.exe or bin\smartgitc.exe. The first one is meant for
regular usage, while the second one will print additional information on the console
while the program runs.

• Mac OS X: SmartGit 3.app\Contents\MacOS\SmartGit

• Linux: bin/smartgit.sh

In the following, we’ll use smartgitc.exe as an example to explain the available options.
Substitute it with the respective launcher for your platform if you’re not using Windows.

There may be additional options available that mainly serve debugging purposes and are
therefore not documented here.

5.2.1 Options ”-?” and ”–help”

With either of the two following commands you can print all command-line options on
the console that are specifically supported by the version of SmartGit you’re using:

Example
smartgitc.exe -?

smartgitc.exe --help

Note On Windows, calling smartgit.exe (instead of smartgitc.exe)
with this parameter has no effect, since the SmartGit process won’t
be attached to any console to print the help output to.

c© 2012 syntevo GmbH, www.syntevo.com 24

Chapter 5. Advanced Settings

5.2.2 Option ”–cwd”

This option sets the current working directory, which affects the path given in the open

and the log option (see below) as follows:

• If the open or log options are specified without their own path arguments, the path
given with the cwd option will be used as argument for open or log.

• If the open or log options are specified with relative paths, these relative paths will
be resolved against the path given with the cwd option.

• If the open or log options are specified with absolute paths, the path given with
the cwd option is ignored.

The path given with the cwd option must be an absolute path. If the path is relative, it
will be ignored.

5.2.3 Option ”–open”

This option launches SmartGit and opens the repository in the specified location.

Example
smartgitc.exe --open C:\path\to\repository

Example
smartgitc.exe --cwd C:\path --open to\repository

5.2.4 Option ”–log”

This option opens SmartGit’s Log window for the repository in the specified location.
The project window is not opened.

Example
smartgitc.exe --log C:\path\to\repository

Example
smartgitc.exe --cwd C:\path --log to\repository

c© 2012 syntevo GmbH, www.syntevo.com 25

Chapter 5. Advanced Settings

5.3 Location of the Settings Directory

The settings directory is where SmartGit will store its settings. See Section 6 for informa-
tion about the default location and contents of the settings directory. On Windows and
Linux, you can change its location by modifying the system property smartgit.settings.
Note that changing the settings directory’s location is not supported on Mac OS X.

Within the value of smartgit.settings, certain Java system properties are allowed, such
as user.home. Another accepted value is the special smartgit.installation property,
which refers to the SmartGit installation directory.

Example
To tell SmartGit to store its settings in the subdirectory .settings of the SmartGit
installation directory, you can set smartgit.settings to the following value:
smartgit.settings=${smartgit.installation}\.settings

How the smartgit.settings property is set depends on your platform:

5.3.1 Windows

All Users

In the file bin/smartgit.vmoptions inside the SmartGit installation directory there is a
line that looks like this:

-Dsmartgit.settings=${smartgit.installation}\.settings

Replace the path given after the = character with a path of your choice.

Current User

The settings directory specified in bin/smartgit.vmoptions can be overridden on a per-
user basis. To do so, create a file named vmoptions in the directory syntevo\SmartGit
inside the application data directory. The location of the latter depends on the Windows
version:

• 2000/XP: C:\Documents and Settings\[Username]\Application Data

• Vista/7: C:\Users\[Username]\AppData

In the newly created vmoptions file, insert a line that sets the settings directory, e.g.
-Dsmartgit.settings=C:\SmartGit\.settings.

c© 2012 syntevo GmbH, www.syntevo.com 26

Chapter 5. Advanced Settings

5.3.2 Linux

Near the end of the file bin/smartgit.sh, there should be a line that looks like this:

VM PROPERTIES="$ VM PROPERTIES -Dsmartgit.settings=...

Uncomment this line by removing the # character at the beginning, then insert a path of
your choice after the -Dsmartgit.settings= part.

5.4 Memory Limit

The memory limit (also known as maximum heap size) specifies how much RAM the
SmartGit process is allowed to use. If the set value is too low, SmartGit may run out of
memory during memory-intensive operations. How the memory limit is set depends on
your operating system:

• Windows (all users): In the file bin/smartgit.vmoptions inside the SmartGit
installation directory, there is a line that looks like this: -Xmx256m. This sets a
memory limit of 256 MB. To set a memory limit of 512 MB, change this to -Xmx512m.

• Windows (current user): The memory limit specified in bin/smartgit.vmoptions

can be overridden on a per-user basis. To do so, create a file named vmoptions in the
directory syntevo\SmartGit inside the application data directory. The location of
the latter is usually either C:\Documents and Settings\[Username]\Application
Data (for Windows 2000/XP) or C:\Users\[Username]\AppData (for Windows
Vista/7). In the newly created vmoptions file, insert a line that specifies the mem-
ory limit, e.g. -Xmx512m for a memory limit of 512 MB.

• Mac OS X: Set the environment variable SMARTGIT MAX HEAP SIZE to the desired
value, e.g. 512m for a memory limit of 512 MB. One way to set this variable for
all users is to open the file /etc/launchd.conf with root priviledges (creating it
if it doesn’t exist) and to add the following line: setenv SMARTGIT MAX HEAP SIZE

512m.

• Linux: Set the environment variable SMARTGIT MAX HEAP SIZE to the desired value,
e.g. 512m for a memory limit of 512 MB. One way to set this variable for all users is
opening the file /etc/profile with root priviledges and adding the following line
at the end (after unmask xxx): export SMARTGIT MAX HEAP SIZE=512m.

c© 2012 syntevo GmbH, www.syntevo.com 27

Chapter 6

Installation and Files

SmartGit stores its settings files per-user. Each major SmartGit version has its own
default settings directory, so you can use multiple major versions independent of each
other. The location of the settings directory depends on the operating system.

6.1 Default Location of SmartGit’s Settings Direc-

tory

• Windows: %APPDATA%\syntevo\SmartGit\<major-SmartGit-version> (%APPDATA%
is the path defined in the environment variable APPDATA)

• Mac OS: ~/Library/Preferences/SmartGit/<major-SmartGit-version>

• Linux/Unix: ~/.smartgit/<major-SmartGit-version>

Tip You can change the directory where the settings files are stored by
changing the property smartgit.settings (see 5.3).

6.2 Notable Files in the Settings Directory

• license stores your SmartGit license key.

• log.txt contains debug log information. It can be configured via log4j.properties.

• passwords is an encrypted file and stores the passwords used throughout SmartGit.

• accelerators.xml stores the accelerators configuration.

• credentials.xml stores authentication information (not including the correspond-
ing passwords).

28

Chapter 6. Installation and Files

• hostingProviders.xml stores information about configured hosting provider ac-
counts (not including the corresponding passwords).

• projects.xml stores all configured projects including their settings.

• settings.xml stores the application-wide settings (e.g. the preferences) of Smart-
Git.

• ui-config.xml stores UI related, more stable settings, e.g. the toolbar configura-
tions.

• ui-settings.xml stores UI related, volatile settings, e.g. window sizes or column
widths.

6.3 Company-wide Installation

For company-wide installations, the administrator may install SmartGit on a read-only
location or network share. To ease deployment and initial configuration for the users,
certain settings files can be prepared and put into a directory named default. For Mac
OS X this default directory must be located in SmartGit.app/Contents/Resources/

(parallel to the Java directory), for other operating systems within SmartGit’s installation
directory (parallel to the lib and bin directories).

When a user starts SmartGit for the first time, the following files will be copied from the
default directory to the user’s settings directory:

• accelerators.xml

• credentials.xml

• hostingProviders.xml

• projects.xml

• settings.xml

• ui-config.xml

• ui-settings.xml

The license file (only for Enterprise licenses and 10+ users Professional licenses) can
also be placed into the default directory. In the latter case, SmartGit will prefill the
License field in the Set Up wizard when a user starts Smartgit for the first time. When
upgrading SmartGit, this license file will also be used, so users won’t be prompted with
a “license expired” message, but can continue working seamlessly.

c© 2012 syntevo GmbH, www.syntevo.com 29

Chapter 6. Installation and Files

Note Typically, you will receive license files from us wrapped into a ZIP
archive. In this case you have to unzip the contained license file
into the default directory.

6.4 JRE Search Order (Windows)

On Windows, the smartgit.exe launcher will search for a suitable JRE in the following
order (from top to bottom):

• Environment variable SMARTGIT JAVA HOME

• Subdirectory jre within SmartGit’s installation directory

• Environment variable JAVA HOME

• Environment variable JDK HOME

• Registry key HKEY LOCAL MACHINE\SOFTWARE\JavaSoft\Java Runtime En-
vironment

c© 2012 syntevo GmbH, www.syntevo.com 30

Chapter 7

Internals of the SVN integration

7.1 Compatibility and incompatibility modes

SmartGit’s SVN integration is available in two modes:

• normal mode: this is the recommended mode of operation. It is used by default,
when a repository was freshly cloned with SmartGit (not git-svn). All the features
are supported in this mode. Created repositories are not compatible with git-svn.

• git-svn compatibility mode: (short just “compatibility mode”) SmartGit can
work with repositories that are created by the git-svn command. In this mode
advanced features like EOLs-, ignores- or externals-translation are turned off. The
SVN history is processed similarly as git-svn does.

7.2 Ignores (normal mode only)

SmartGit tries to map svn:ignore properties onto .gitignore file(s). Unlike git svn

create-ignore command SmartGit puts .gitignore file under version control. If the
user modifies .gitignore and pushes, the corresponding svn:ignore property is changed.

.gitignore syntax is significantly richer compared to svn:ignore, so .gitignore can
contain a pattern that can’t be mapped to svn:ignore. In this case it is not translated.

Adding/removing a recursive pattern in .gitignore corresponds to setting/unsetting that
pattern on every existing directory in the SVN repository. When such an SVN revision
is fetched (back) to the Git repository it doesn’t result into a recursive pattern anymore.
Instead it is translated to a set of non-recursive patterns: one pattern per directory.

31

Chapter 7. Internals of the SVN integration

Example
Suppose we have the following directories in the SVN repository:

A {

B {}

C {}

}

And we add .gitignore with only one line:

somefile

and push. This will set svn:ignore-property to somefile for all directories: A, B,
C. After fetching such a revision we have the following .gitignore contents (lines
order is not important):

A/somefile

A/B/somefile

A/C/somefile

Git doesn’t support patterns that contain space. SmartGit replaces all spaces in the
svn:ignore value with [!!-~] while .gitignore construction. The opposite it true: all
newly added patterns with [!!-~] are converted to svn:ignore with spaces at these
places.

7.3 EOLs (normal mode only)

Different EOLs on different systems can cause some troubles when using git-svn on Win-
dows. For instance, if the SVN repository contains a file with svn:eol-style set to CRLF,
its content is stored with CRLF line endings as well. git-svn directly puts the file contents
into Git blobs without any modifications. If the user has core.autocrlf Git option set
to false this can make it impossible to get a clean working tree and hence git svn

dcommit won’t work. This happens, because while checking whether the working tree is
clean, Git converts working tree file EOLs to LF and compares with the blob contents
(which has CRLF). On the other hand, setting core.autocrlf to false causes problems
with files that contain LF EOLs.

Instead of setting a global option, SmartGit carefully sets the EOL for every file in the
SVN repository using its svn:eol-style and svn:mime-type values. It uses the versioned
.gitattributes file for this purpose. Its settings have higher priority than core.autocrlf-
option, so with SmartGit it doesn’t matter what the core.autocrlf value is.

Warning! .git/info/attributes-file has higher priority than versioned
.gitattributes files, so it is strongly recommended to delete it
or leave it empty. Otherwise, this may confuse Git or SmartGit.

c© 2012 syntevo GmbH, www.syntevo.com 32

Chapter 7. Internals of the SVN integration

By default, a newly added text file (that is detected by Git as a text file) which is pushed
has svn:eol-style set to native and no svn:mime-type property set. A newly added
binary file has no properties at all.

One can control individual file properties using svneol git attribute. The syntax is
svneol=<svn:eol-style value>#<svn:mime-type value> where for example:

*.c svneol=LF#unset

means that all *.c-files will have svn:eol-style=LF and no svn:mime-type set after
Push. Recursive attributes are processed like recursive ignores: their changes result in
changes of properties of all files in the SVN repository.

7.4 Externals (normal mode only)

SmartGit maps svn:externals properties to its own kind of submodules, that have the
same interface as Git submodules.

Note Only externals pointing to the directories are supported, not exter-
nals pointing to individual files.

SVN submodules are defined in .gitsvnextmodules. The file has the following format:

[submodule "path/to/submodule"]

path = path/to/submodule

owner = /

url = https://server/path

revision = 1234

branch = trunk

fetch = trunk:refs/remotes/svn/trunk

branches = branches/*:refs/remotes/svn/*

tags = tags/*:refs/remote-tags/svn/*

remote = svn

type = dir

• path: specifies the submodule location from the working tree root.

• owner: specifies the SVN directory that has a corresponding svn:externals property.
The owner directory should be a parent to the submodule location. If the owner is
the root of the parent repository itself, the option should be set to ”/”.

• url: specifies the SVN URL to be cloned there (svn:externals syntax can be used
here) without a certain branch.

c© 2012 syntevo GmbH, www.syntevo.com 33

Chapter 7. Internals of the SVN integration

• revision: specifies the revision to be cloned. Absence of the option or using HEAD
means the latest available revision.

• fetch, branches, tags: specify the SVN repository layout and have the same
meaning as the corresponding git-svn options of .git/config.

• branch: specifies the branch to checkout: a path from the URL of url option. It
must not contradict the SVN repository layout. The empty branch (if fetch=:refs/remotes/git-svn)
should be specified using slash /.

• remote: specifies the name of the svn-git-remote section of the submodule.

• type: specifies the type of the submodule (default: dir). For the most of the
practical cases submodule points to a directory. Some svn:externals can point to a
file, then the option has value file.

Changes in .gitsvnextmodules are translated to the SVN repository as changes in
svn:externals and vice versa.

There are two types of SVN submodules between which the user can choose during sub-
module initialization:

• snapshot submodules: contain exactly one revision of the SVN repository. They
are useful in case the external points to a third party library which is not changed
as part of the project (parent repository).

• normal submodules: are completely cloned repositories of the corresponding ex-
ternals. It’s recommended to use them when working in both, parent repository and
submodule repository, at the same time.

SmartGit shows the repository status in the Directories-window. If the directory has
default color (yellow), the submodule’s current state exactly corresponds to the state
defined by .gitsvnextmodules, and there are no local commits. Otherwise it has modified
color (pink).

One can use Local|Stage to update the .gitsvnextmodules configuration to the current
SVN submodule state.

7.5 Symlinks and executable files

Symlinks-processing and executable-bit processing it identical as with git-svn. SVN uses
svn:special-property to mark a file as symlink. Then its content should be like the
following:

link path/to/target

c© 2012 syntevo GmbH, www.syntevo.com 34

Chapter 7. Internals of the SVN integration

Such files are converted to Git symlinks. In a similar way, files with svn:executable are
converted to Git executable files and vice versa.

7.6 Tags

Unlike git-svn, SmartGit creates Git tags for SVN tags. If an SVN tag was created by a
simple directory copying, SmartGit creates a tag that points to the copy-source; otherwise
SmartGit creates a tag that points to the corresponding commit of refs/remote-tags/svn/<tagname>.
Git tags can also be converted to SVN tags by Remote|Push Advanced.

Note Git tags which are objects on their own (not simple refs) are not
supported.

7.7 History processing

7.7.1 Branch replacements

In the compatibility mode, SmartGit processes the SVN history like git-svn does, with
the difference that SmartGit doesn’t support svk:merge property. In the case when one
SVN branch was replaced, SmartGit and git-svn create a merge-commit.

In the normal mode, SmartGit uses its own way of history processing: in case of branch re-
placements no merge commit is created but instead a Git reference refs/svn-attic/svn/<branch
name>/<the latest revision the branch existed> is created.

Tip It is easy to create a branch replacement commit from SmartGit:

• Use Local|Reset and reset to some other commit

• Invoke Remote|Push: SmartGit will propose to replace the
current branch.

7.7.2 Merges

Translating merges from SVN to Git

Completely merged SVN branches correspond to merged Git branches. So, for SVN revi-
sions that change svn:mergeinfo in a way that some branch becomes completely merged,
SmartGit creates a Git merge-commit. For branches which have not been completely
merged, no merge-commit is created.

c© 2012 syntevo GmbH, www.syntevo.com 35

Chapter 7. Internals of the SVN integration

Translating merges from Git to SVN

Pushing Git merge-commits results in a corresponding svn:mergeinfo modification, de-
noting that the branch has been completely merged.

Warning! When using SmartGit to merge revisions which have not been com-
pletely translated to Git, corresponding merges are lossy. This
means that pushing back such a merge commit to the SVN repos-
itory would lose certain kind of information what is most likely
not intended by the merge. This happens for instance if one of
the merged revisions contains an svn:keyword-property change (as
svn:keyword is not mapped to the Git repository). In this case
SmartGit will issue a warning when attempting to merge and when
pushing.

7.7.3 Cherry-picks

SmartGit supports translation of two kinds of cherry-pick merges between SVN and Git
which are:

• either done using SmartGit;

• or done using another Git client, without --no-commit option.

Only cherry-picks of Git commits that correspond to (already pushed) SVN revisions
(but not local commits) are supported. Pushing of a cherry-pick commit results in a
corresponding svn:mergeinfo change.

7.7.4 Branch creation

SmartGit allows to create SVN branches simply by pushing locally created Git branches.
In this case, SmartGit will ask you to configure the branch for pushing.

Note SmartGit always creates a separate SVN revision when creating a
branch, which contains purely the branch creation. This helps to
avoid troubles when merging from that branch later.

7.7.5 Anonymous branches

Anonymous branches can be met very often in a Git repository, usually when the default
Pull behavior is merge instead of rebase. Such branches are not mapped back to SVN, as
anonymous SVN branches are not supported. For instance, following history:

c© 2012 syntevo GmbH, www.syntevo.com 36

Chapter 7. Internals of the SVN integration

E-F

/ \

A-B-C-D-G-H (branch)

will be pushed as a linear list of commits: A,B,C,D,G,H. E and F won’t be pushed at all.

7.8 The Pushing process

Pushing of a commit consists of 3 phases:

• sending the commit to SVN;

• fetching it back;

• replacing the existing local commit with the commit being fetched back.

Note, that not only the local commit is replaced but also all commits and tags that are
dependent on it. For example, if one has a local commit and a Git tag set on it, after
pushing the Git tag will be moved to the commit which has been fetched back from the
SVN repository.

The pushing process requires the working tree to be clean to start, and it uses the working
tree very actively during the whole process. So it is NOT RECOMMENDED to make
any changes in the working tree during the pushing process. Otherwise these changes can
be lost.

Sometimes it is impossible to replace the existing local commit with the commit being
fetched back, because other commits (from other users) might have been fetched back as
well and these commits contain conflicting changes with the remaining local commits. In
this case, SmartGit leaves the working tree clean and asks the user to solve the problem.
The easiest way to solve the problem is to press Pull with Rebase option turned on, then
the rebase process will be started.

Example
The last repository revision is r10. There are 2 local commits A and B which are
going to be pushed. First, A is sent, resulting in revision r12, as in the meanwhile
someone else has committed r11. Now, r11 and r12 (corresponding to local commit
A) are fetched back. Let’s assume that r11 and local commit B contain changes for
the same file in the same line. Hence, replacing A by fetched back commits r11 and
r12 won’t work, because changes of B are conflicting now and can’t be applied onto
r12.

c© 2012 syntevo GmbH, www.syntevo.com 37

Chapter 7. Internals of the SVN integration

7.9 Non-ASCII symbols support

An SVN repository allows to use any UTF-8 symbol within file and directory names. Git
considers path names as an array of bytes and cannot display characters that are not
supported by the system encoding.

To solve this problem SmartGit uses its own system-dependent %-coding method such
that ASCII characters and characters that are supported by the system encoding are
displayed as-is and unsupported characters are encoded using following format:

%<hex digit><hex digit><hex digit><hex digit>[<hex digit><hex digit>]

where hex digits is a byte array representation of the path in UTF-8 encoding. The
symbol % can be encoded if there is no ambiguity (i.e. if there’re not 4 or 6 hex digits
after %).

Example

• SVN path ”100%” corresponds to Git path ”100%”;

• SVN path ”100%123” corresponds to Git path ”100%123”;

• SVN path ”100%0025” corresponds to Git path ”100%” (as one can see, the
mapping is not one-to-one and some exotic Git paths like ”%0025” have no
SVN representation);

• SVN path ”100%1234” corresponds to Git path ”100” + symbol which UTF-8
representation consists of 2 bytes (if such symbol exists): 12 and 34.

7.10 SVN support configuration

7.10.1 SVN URL and SVN layout specification

In compatibility mode, .git/config is used for specification of SVN URL and SVN
repository layout. In normal mode SmartGit uses .git/svn/.svngit/svngitkit.config
file for this purpose.

In compatibility mode SVN URL and SVN layout are specified in svn-remote section.
In normal mode the corresponding section is called svn-git-remote.

The section has contents like the following:

[svn-git-remote "svn"]

c© 2012 syntevo GmbH, www.syntevo.com 38

Chapter 7. Internals of the SVN integration

url = https://server/path

rewriteRoot = https://anotherserver/path

fetch = trunk:refs/remotes/svn/trunk

branches = branches/*:refs/remotes/svn/*

additional-branches = path/*:refs/remotes/*;another/path:refs/remotes/another/branch

tags = tags/*:refs/remote-tags/svn/*

• url: specifies the physical SVN URL to connect to the SVN repository;

• rewriteRoot: specifies URL to be used in the Git commit messages of fetched
commits. If this option is omitted it is assumed to be the same as url value. The
option is useful for continuing working with the repository if the original SVN URL
has been changed (in this case rewriteRoot should be changed to old SVN URL
value);

• fetch, branches, additional-branches, tags: specify pairs (SVN path, Git ref-
erence) of for all interesting paths of SVN repository. All path beyond these won’t
be considered by SmartGit. There’s practically no difference between these op-
tions. Options fetch, branches, tags are supported by git-svn and allow only 1
pair. Option additional-branches is only supported by SmartGit and allows arbi-
trary number of ;-separated pairs. Option fetch for compatibility mode defines the
branch to be checked out and configured as tracked after fetch. SmartGit doesn’t
support git-svn patterns in the config and allows only usage of asterisk (*). The
number of asterisks in the SVN path and Git reference pattern should be equal. No
patterns except maybe fetch pattern should intersect.

7.10.2 Translation options

SmartGit keeps all translation options in .git/svn/.svngit/svngitkit.config file in
core section.

The section looks like the following:

[core]

processExternals = true

processIgnores = true

processEols = true

processTags = true

These boolean options define if SmartGit should process svn:externals, svn:eol-style/svn:mime-type,
svn:ignore and SVN tags in a special way. The options are set once before the first fetch
and shouldn’t be changed.

c© 2012 syntevo GmbH, www.syntevo.com 39

Chapter 7. Internals of the SVN integration

In nomal mode all these options are set to true by default except the case if SmartGit
detects that .gitattributes file becomes too large (in this case processEols is set to
false).

In compatibility mode all the options are set to false.

7.10.3 Tracking configuration

SmartGit’s SVN support has tracking configuration that is similar to Git tracking config-
uration. If the some local branch (say, refs/heads/branch) tracks some remote branch
(refs/remotes/svn/branch) this means that:

• it is possible to push the local branch and it will result in the corresponding SVN
branch modification according to the repository layout. If the local branch is not
configured as tracking of some remote branch it won’t be pushed;

• while fetching SmartGit proposes to rebase local tracking branch onto tracked
branch after Pull if the corresponding option is selected.

SmartGit uses branch sections of .git/svn/.svngit/svngitkit.config file for tracking
configuration.

The section looks like the following:

[branch "master"]

tracks = refs/remotes/svn/trunk

remote = svn

The name of the section is the local branch name.

• tracks: specifies the remote tracked branch;

• remote: specifies the remote section name with the SVN URL and SVN repository
layout.

7.11 Known limitations

There are following notable limitations when working with SmartGit:

• Custom user properties are not translated to Git and hence can’t be manipulated

• svn:keywords property is not supported

c© 2012 syntevo GmbH, www.syntevo.com 40

Chapter 7. Internals of the SVN integration

• Empty directories can’t be managed by Git and won’t be available

• File locks are not supported

• Sparse check outs are not supported

• Explicit copy and move operations are not possible, Git recognizes them automati-
cally

• Merging of files/directories which contain custom properties or svn:keywords will not
retain these properties on merge (SmartGit will tell you when pushing the commits
back to the server)

• svk:merge is not supported

c© 2012 syntevo GmbH, www.syntevo.com 41

	Introduction
	Git Concepts
	Repository, Working Tree, Commit
	Typical Project Life Cycle
	Branches
	Working with Branches
	Branches are just Pointers

	Commits
	It's All About Commits
	Putting It All Together

	The Index
	Merging and Rebasing
	``Normal'' Merge
	Fast-forward Merge
	Squash Merge

	Working Tree States
	Submodules
	Git-SVN

	Important Commands
	Project-Related
	Open Repository
	Cloning a Repository

	Synchronizing with a Remote Repository
	Push
	Pull
	Synchronize

	Local Operations on the Working Tree
	Stage
	Unstage
	Ignore
	Commit
	Undo Last Commit
	Edit Last Commit Message
	Discard
	Remove
	Delete

	Branch Handling
	Switch
	Check Out
	Merge
	Rebase
	Add Branch
	Add Tag
	Branch Manager

	Directory tree and file table
	Advanced Settings
	System Properties
	Command-Line Options
	Options "-?" and "–help"
	Option "–cwd"
	Option "–open"
	Option "–log"

	Location of the Settings Directory
	Windows
	Linux

	Memory Limit

	Installation and Files
	Default Location of SmartGit's Settings Directory
	Notable Files in the Settings Directory
	Company-wide Installation
	JRE Search Order (Windows)

	Internals of the SVN integration
	Compatibility and incompatibility modes
	Ignores (normal mode only)
	EOLs (normal mode only)
	Externals (normal mode only)
	Symlinks and executable files
	Tags
	History processing
	Branch replacements
	Merges
	Cherry-picks
	Branch creation
	Anonymous branches

	The Pushing process
	Non-ASCII symbols support
	SVN support configuration
	SVN URL and SVN layout specification
	Translation options
	Tracking configuration

	Known limitations

